PROGRAMMING AND CULTURE

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Ian Anders Arawjo

May 2023



© 2023 Ian Anders Arawjo
ALL RIGHTS RESERVED



PROGRAMMING AND CULTURE
Ian Anders Arawjo, Ph.D.
Cornell University 2023

I situate computer programming as a cultural practice. I develop this per-
spective in two ways: exploring how programming practices can support inter-
cultural learning, and examining how programming tools themselves embed
cultural assumptions and values. For the former, I study how relationships
across difference are formed over computing activities in K-12 classrooms in
Kenya and the U.S. Asking how programming concepts may serve people’s in-
tercultural development, I develop a new type of activity, “cultural algorithms,”
which uses algorithmic concepts to teach about the social construction of soci-
eties. Turning to the material means through which we ‘write’ code, I then trace
the earliest history of programming and reveal epistemological tendencies and
biases in the field. From the resulting insights, I develop a new Al-powered
paradigm, notational programming, as one critical design that seeks to disrupt
dominant norms around typing code. Throughout, I aim to muddle the bound-
aries between ‘programming’ and ‘culture,” exploring programming both as a
tool for making change (changing the programming in culture), and as a tool
to be changed (changing the culture in programming). Ultimately, I argue that
intercultural approaches to computing are focused on ontological change; that
is, changing the boundaries and categories that people deploy to divide them-

selves from others and diminish the complexity of the world.
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CHAPTER 1
INTRODUCTION

Computing is at a crossroads. Where before humanistic, critical approaches
from science and technology studies (STS), anthropology, cultural studies and
more were eschewed as outside the “core” of computer science (CS) and human-
computer interaction (HCI), increasingly, the image of computing as a purely
“technical” field is beginning to fall. Alongside this shift that we might call
computing’s “loss of innocence” or “loss of naiveté” —embodied in the foci of
ethics and fairness, structural discrimination and inequality, and the limitations
of technological solutionism —is a growing attention towards history and cul-
tural difference, particularly sociocultural theories that mobilize words like “on-
tology” and “epistemology” in what were heretofore technical conferences or

journals.

The field of computing, therefore, no longer knows what it is —or, at least,
has less of a coherency about it than ever before. We now approach new tech-
nology with hesitation, disillusioned by failed deployments or deployments
that have worked so well that they have amplified inequality and division,
while leaving the underlying architecture of society untouched. When mar-
keters claim a new technology will solve pressing problems or meet dire social
needs, we now expect the opposite —that more Facebook friends and engage-
ment has no relationship to quality of social life (perhaps even an inverse one);
that Twitter drives us further apart; that dreams of space travel are yet another
diversion for capitalists to avoid redistributive change. For HCI researchers, it

is increasingly commonplace, even expected, to be a cynic.

My dissertation concerns one corner of our newfound interest in (or rather,



return to) questions of culture and history in computing: the programming of
machines and the practices and notations used to accomplish it. Programming
has become so commonplace, so normalized, its practices so deeply entwined
with standardized hardware (QWERTY shift-key keyboards, mice, etc.) and
software (command line, IDEs, etc) that it has become exceedingly difficult to
imagine it otherwise, to see it not as a set of inevitable practices that emerged
from logic and reason, but culture- and history-laden practices that involved,
and in some cases reproduced, existing norms, values, and beliefs of their pro-

genitors.

In this thesis I argue that computer programming should be seen and en-
gaged through a cultural lens. I consider programming activities as sites of
inter-cultural encounter, conflict, and positive transformation. I show how pro-
gramming practice itself arose from such encounters, and how the early history
of programming inscribed and reinforced certain epistemological perspectives
over others. Throughout, I aim to muddle the boundaries between “program-
ming” and “culture,” exploring programming both as a tool for making change
(changing the programming in culture), and as a tool to be changed (changing

the culture in programming).

My situating of programming as a cultural practice —or as it is fashionable
to call it today, “coding” —is not new. It meshes with some early thoughts on
programming that curiously came not from the technologists or CS professors
per say but from the learning sciences, where for several decades academics
have engaged questions at the intersection of computer programming and cul-
ture, often derived from intractable inequities. The work of these scholars was

not just a matter of being culturally responsive in specific activities, but working



to change what Turkle & Papert called the “computing culture” [407].

Turkle & Papert’s work on epistemological pluralism raised questions about
how the cultural backgrounds and interests of novices informed their program-
ming practice. Some of the emergent conflicts between teachers and students
were not conceptual misunderstandings but rather cultural, about valuing cer-
tain ways of coding over others. In the process of translating the practice of po-
etry into a computer program, for instance, students encountered a deeper con-
flict between “general-purpose” practices which dictated how they “should”
program, and how they preferred to program. These dominant ways of pro-
gramming had been codified, encoded into the programming culture (and some-
times, the design of its notations and software) from people who had different
goals (e.g., plotting missile trajectories), backgrounds, and identities. Thus, this
early work expressed the following insight: that asking questions about the cul-
ture of programming inevitably leads us to question how culture has been pro-
grammed, by whom, and for what ends. As computer programs embed human
rules and procedures, so do people act on and transmit rules and scripts; e.g., in-
heritance law, voting procedures, academic credentialing processes, and racial
ideologies. Ultimately, when we are interested in the culture in programming,

we are interested in the programming in culture.

This dissertation has two parts. The first half concerns how programming
activities can support people’s intercultural learning. It begins with work on
how to bring students together across difference in intro CS classrooms at the
K-12level, and leads into exploratory work on how algorithmic thinking can aid
the development of intercultural competence, through the concept of “cultural

algorithms.” The cultural algorithms section focuses on intercultural learning



about racial ideology, by introducing racecraft as a intercultural perspective on
race/ism in the U.S. [142], and then exploring an example activity, Birdcraft,
that uses pseudocode as a tool to help people understand it. The second half
of this dissertation concerns the culture “in” programming (communities and
tools) through historical research and critical design. It traces the earliest his-
tory of “writing code,” and afterwards explores a new paradigm of interaction,
notational programming, which seeks to destabilize the dominant, typewritten

paradigm. I summarize these chapters below.

Chapter 2 overviews prior work and relevant concepts throughout the the-
sis, including culture, intercultural, intergroup, cultural-historical activity the-

ory, constructionism, and critical peace education.

Chapter 3 draws from empirical work to explore contemporary computer
programming spaces and practices as sites of intercultural encounter and de-
velopment. Instead of viewing K-12 CS classes as places for ingesting concepts,
or even exploring individual identity through project-based learning, I ask how
it might be a place for intercultural learning: bridging social divides, develop-
ing intercultural competence, and facilitating new intergroup friendships which
outlast classes. Drawing from qualitative studies of intro programming classes
for youth in Kenya and the U.S., I suggest computing education’s affordances
for intercultural learning and intergroup bonding, as well as several compli-
cations which strain normative assessments of learning outcomes or present
dilemmas to educators and researchers (e.g., tensions between equity goals and

intergroup contact).

Chapter 4 asks how we might leverage the concept of an algorithm to teach

about the construction of societies; specifically, to denormalize tacit cultural



practices and beliefs [183]. This contrasts with prior work that focused on more
“explicit” connections of computing to culture through craftwork, language
or fashion (e.g., ethnocomputing, culturally responsive computing). Drawing
from a workshop conducted with K-12 CS educators, I introduce and explore
the concept of a “cultural algorithm” as a mechanism to help participants un-
derstand social constructionism, specifically the development of intercultural
competence around “race” and racism. I situate this perspective primarily
in the work of Black and Indigenous scholars and intellectuals, foremost the
Fields sisters’ racecraft, as well as Toni Morison’s concept of the “racial house,”
Paul Gilroy’s position “against race,” and Carlos Hoyt’s “non-racial worldview”
[286, 152, 206, 142]. Far from being separate topics, I suggest that computing
concepts can contribute to future anti-racist action by revealing the hidden gears

of racecraft and foregrounding how racism produces race.

Chapter 5 shifts towards material concerns to trace how programming has
always been inter-cultural —a practice that lies at the intersection of various
cultural practices —by providing a historical analysis of the earliest history of
electronic computer programming. I show how power dynamics and socioma-
terial forces shaped the dominant computing culture that stabilized around the
mid-1950s. In particular, I argue that the dominant programming practice which
arose around FORTRAN re-inscribed a prior European division between writ-
ing and drawing, the “textual” and the “visual.” My historical work provides a
social and, crucially, material foundation for conceptualizing sites of computer
programming today as opportunities for either embracing, or diminishing, the
cultural differences that people bring to the task. We see how the personal inter-
cultural development (or lack of it) of key actors in computing history helped

shape the field in critical ways, in what value they attached to certain represen-



tations over others. In particular, I suggest that the term “language” became
attached to “programming” exactly when the typewriter was adopted as the
primary input method. Because of this association between language and typ-
ing in programming practice, I suggest that whenever we center the term “pro-
gramming language” (over, say, programming environments or systems), we are

implicitly recentering typing as the dominant input method.

Chapter 6 expands upon points raised by my historical analysis in Chapter 5,
in particular the claim that programming’s early history re-inscribed an artificial
division between “writing” and “drawing” (and relatedly, the “textual” and the
“visual”). In that chapter, I concluded that future tools should seek to challenge
the writing /drawing dichotomy and centrality of typewritten input. To explore
one design that embodies this alternate reality, I develop a new programming
paradigm, notational programming, that integrates handwritten and typewritten
notations within a traditional code editor. I build a prototype, Notate, which
allows users to open drawing canvases within lines of code. I describe mech-
anisms of how handwritten and typewritten practices might work in concert,
developing an interaction principle, “implicit cross-context references,” where
handwritten symbols can refer to typewritten ones and vice-versa. As a case
study, I explore quantum computer programming and extend quantum circuit
notation with abstraction features, including variable-sized inputs and recur-
sion. Using deep learning and classical sketch recognition techniques, I then
implement an interpreter for a subset of this new notation. A usability study
suggests that participants find the core interaction of “implicit cross-context ref-
erences” intuitive. A further comparison with a typewritten API shows that, in
spite of troubles with recognition rates, handwritten notation was, in the large,

comparable in terms of task time to typing code. I suggest that one medium



is not universally better than another, and advance a “heterogenous” vision of

programming as the intermingling of type- and hand-written practices.

Chapter 7 (Conclusion) ties it all together by concluding that intercultural
approaches to computing are interested in ontological design [429, 433, 137], or
rather, changing or challenging dominant ontologies that enforce rigid regimes
of classification which divide and diminish. Threading my work is how com-
puting, and its rich concepts and spaces, might be tools both for making change,
and tools to be changed. To close, I suggest that resisting dominant social prac-
tices often requires actions and design choices that are initially perceived less fa-
vorably: whether upsetting established dogma, or denigrated as naive. Rather
than seeing such reactions as negative, however, I conclude that they may serve

as important signals that one is on the right track.

This thesis takes a breadth-first approach to its investigations of program-
ming as a cultural practice. It applies methods ranging from ethnographic and
qualitative, to archival research, to usability studies with mixed methods.! It
bears mentioning that this approach was not planned or chosen. My initial goal
was for the content of Chapter 3 to form the bulk of the dissertation, but the ad-
vent of the COVID-19 pandemic disrupted my educational research in schools.
In response, the thesis necessarily had to widen in scope, resulting in Chapter 4
on “cultural algorithms” activities and theorization, as well as the final chapter
about the design and evaluation of a deep learning-powered system for “nota-

tional programming” (a practical offshoot of my historical work in Chapter 5).

The research is also interdisciplinary, connecting to literature in a wide range of fields, from
information communication technology for development (ICTD), to the sociology of race/ism
and ethnicity, to quantum programming. Although theoretical contributions are not the primary
focus, critical HCI researchers may find some useful nuggets here; for instance, I take issue with
widely read works in the field, such as claims by Ames about the One Laptop Per Child program
embodying Papert’s constructionism, or Chun’s claim in “Race and /as Technology” that racism
“stems from race” [12, 86]; see Chapters 2 and 4.



I believe the thesis is stronger because of this circuitous path, instead of in spite
of it. Throughout, I hope readers find interesting takeaways that prove useful
for those seeking to understand —and sometimes to challenge —the taken-for-

granted practices of computer programming.



CHAPTER 2
THEORETICAL BACKGROUND AND RELATED WORK

My work draws from a wide range of theoretical frameworks and literatures,
including cultural-historical activity theory, intercultural development theory,
prejudice reduction, critical peace education, the sociology of ethnicity, and
cultural constructionism. In this chapter, I provide an overview of key terms
and frameworks that shall appear throughout the rest of this thesis. These are
roughly divided into topics of culture, interpersonal relations, and pedagogy.
The order is strategic: the “cultural” foci frames the latter two concerns, and
our understanding of relationships across difference informs pedagogy. After
exploring these three topics, I briefly justify why I chose the term “intercultural”

over “intergroup” for my educational work.

2.1 Defining Culture, Intercultural, and Intergroup

2.1.1 Culture

As might be anticipated, “culture” has a long history as a term. Decades of
scholars have grappled with the, in the words of Edward Hall, “very muddied”
concept [183, p. 43]. Here I attempt a brief summary, leading into the emergence

of the “intercultural” term.

Evolving from the original Latin term cultura meaning cultivation of soil,
“culture” became an agricultural metaphor for tending the “soul” or mind

around the early 19th century [411]. This concept of culture was linked to upper-



class interests such as the arts, music, fashion, literature, and theatre and meant
“an institutional sphere... devoted specifically to the production, circulation,
and use of meanings” [376]. Although embraced by early sociologists and cul-
tural studies scholars, anthropologists rejected this “high-class” concept of cul-
ture and developed instead a “structuralist” or functional concept of culture as a
bounded, static, closed property of a community which explains its inner work-
ings and the sustainability of its way of life. The structuralist concept would re-
ceive its own critique around the 1970s-1980s, however, when some anthropolo-
gists argued for a more “dynamic” concept of culture; this resulted in furthering
the divide between “culture as a system of symbols and meanings” and “culture
as practice” (p. 44-46). Critiquing the former concept and concerned with the
colonial underbelly of early anthropology, some anthropologists proposed do-
ing away with “culture” entirely, preferring alternative terms such as “practice”
and “discourse” [3]. For instance, the term “culture” is notably absent in Donna
Haraway’s celebrated article “Situated Knowledges,” even though what she of-

ten seems to be speaking about is cultural difference [192].

Despite these clarion calls, “culture” is not dead. Coming from a linguistic
perspective, Brightman suggested that many of culture’s detractors in anthro-
pology constructed a “straw culture” to attack by cherrypicking certain histori-
cal uses while avoiding others; for Brightman, culture had always included both
“practice” and “system” concepts, and close readings of classic texts would re-
veal this [64]. Sewell agreed and called instead for a merging of definitions: “[if]
we cannot do without a concept of culture, I think we should try to shape it into
one we can work with. We need to modify, rearticulate, and revivify the concept,
retaining and reshaping what is useful and discarding what is not.” Culture is

system and practice for Sewell, “worlds of meaning as normally... contradictory,
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loosely integrated, contested, mutable, and highly permeable” [376, p. 38, 53].

Indeed this definition is closer to how “culture” is usually mobilized in the
learning sciences, anthropology, and HCI today [176, 94, 215, 77] —as “genera-
tive” or hybrid rather than static, encompassing the arts and practice, thought
and action. For instance, Irani & Dourish resist “taxonomic” definitions of cul-
ture, e.g. those which see culture as a system of classification and geographic
separation (such as Hofstede [201]), and instead ask how we might account
for “global traffic in cultural concepts.” They define culture as “a lens through
which people collectively encounter the world, a system of interpretive signifi-
cation which renders the world intersubjectively meaningful... [A]n individual
may participate in many cultures —cultures of ethnicity, nationhood, profes-
sion, class, gender, kinship, and history —each of which, with their logics and
narratives, frame the experience of everyday life” [215, p. 2-3]. Where before
culture referred to, say, artwork or religion, now “culture” also comprises both
mathematical notation and the “feel” of Silicon Valley organizations, thanks in
part to science and technology studies’ (STS) reframing of culture as something
that occurs also in scientific settings [331]. Irani & Dourish’s focus on how the
“intersubjective” constructs difference indeed sounds like social identity the-
ory (a point I will elaborate on shortly); an Oxford encyclopedia article around
prejudice and discrimination defines a similarly inclusive definition of culture
as: “The way of life of a group of people, including symbols, values, behaviors,
artifacts, and other shared aspects, that continually evolves as people share mes-
sages and is often the result of a struggle between groups who share different

perspectives, interests, and power relationships” [40].

These definitions, bundling both “system” and “practice” into one concept,
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do avoid the trap of seeing cultures as well-bounded and mutually exclusive,
but may cause us to wonder what, in fact, is not cultural! If we hope the learn-
ing sciences will fish us out, we are out of luck; cultural-historical activity theory
(CHAT) has perhaps the most generously expanded definitions of culture.! De-
spite this ambiguity, “generative” interpretations of “culture” are the ones I shall
adopt for this thesis. The postcolonial definition offered by Irani & Dourish,
coupled with an emphasis on artifacts and theory of cultural learning, captures
the cultural factors that computing education involves —heavy use of artifacts,
technologies, epistemologies usually developed in a Western context; cooper-
ation and problem-solving across differences; shared design and negotiation.
Rather than the taxonomic approach to culture, individuals are viewed as rep-
resenting a potential plurality of cultural expression and understanding. This
opens the door to a generous “intercultural” framing [215] or “cultural flexibil-
ity” [77] that also includes material and environmental factors. My generative
usage of “culture” is meant to be an orientation or sensibility towards deferring,
as much as possible, to how cultural difference emerges in classes, rather than
prematurely imposing assumptions about particular groups or categories, and

therefore aligns with an ethnomethodological or social constructivist approach.

2.1.2 Intercultural

Given that we already have a term for “culture” that is rather broad, why in-
troduce yet another? The difference may be on emphasis: historically, the term
“intercultural” centered interactions across (usually substantial) cultural differ-

ences, rather than analyses of general cultural practices and systems within a

1See, e. g., Gutierrez et al. [176]. I will expand upon CHAT in Section 2.2.1.
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particular society, community or discipline. The term was popularized by the
tield of intercultural communication, founded by Edward Hall in work at the
Foreign Service Institute at the U.S. Department of State in the 40s and 50s
[250]. Since then, there have been many definitions and subfields using the term
“intercultural,” succeeded by multiple nouns: “understanding,” “dialogue,”

s

“learning,” “competence,” etc. (the issue is compounded when we consider the
ambiguously related field of “cross-cultural” factors). Here I briefly summarize

the history and general usage of “intercultural.”

Edward Hall’s book The Silent Language [183] introduces the general prob-
lem of communication across what at that time were, at least much more so than
today, largely geographically-bounded societies with their own distinct differ-
ences —through language, ways of dress, religions, etc. —applying a similar
definition of culture to that of anthropology of the time. The Silent Language was
preoccupied with tacit behavior and value differences between cultural groups
along the lines of “time and space” (p. 24). Intercultural learning for Hall was
about teaching how concepts of time and space operate differently to different
communities of people, and how these tacit differences are the source of much
conflict. Culture for Hall was “a form of communication,” (p. 51) verbal and
non-verbal, explicit and tacit (in Hall’s terms, “formal, informal, and techni-
cal”); culture “speaks” (p. 55). Hall describes conflicts between two interacting
societies that might otherwise be avoided, should one side be trained in cultural
differences and self-reflection on their own background. Examples were often
along the lines of white employers looking to speak to and manage “native” em-
ployees, or U.S. diplomats in negotiation with Asian societies. Hall also seemed
to draw an implicit line between inter-“racial” conflicts present in U.S. settings

and his “intercultural” conflicts or misunderstandings abroad. For instance,
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Hall introduces the book with a story about majority-minority conflict during a
stint as “a member of a mayor’s committee on human relations in a large [U.S.]
city.” In interviews with administrators, he describes how their response to a
non-discrimination policy could be predicted by whether they kept him “at a
distance” during the interview or not, operationalized through space (chair-to-
chair distance or obstacles between them) or time (appointments lost, or little
time set aside to discuss). Although Hall’s “formal, informal, technical” taxon-
omy of culture does not seem to have taken root, the idea that different societies
invent tacit, not just explicit, means of communication (that insiders struggle
to reflect on), and that these tacit differences are the source of much “inter”-
cultural conflict, persists today (often spoken of as conflicts between different

ontologies and/or epistemologies, see Verran [412]).2

By focusing on situated interactions and communication, Hall took an
“emic” (insider’s point of view) perspective rather than the “etic” (high-level
comparative analysis) perspective common to anthropology of the time [250].
Hall’s approach necessitated a shift in how anthropologists dealt with “culture”
from their “macro” analysis to a micro-sociology of interactions, grounded in
the need to give foreign service diplomats and corporate actors practical ad-
vice on everyday communication.’ In this way, intercultural communication
seems to have paved the way to the expansion of the “culture” concept sim-
ilar to the generative and CHAT understandings previously mentioned. For

instance, in a more recent article on intercultural competence, Kim defines cul-

2This is in sharp contrast to Tajfel’s social identity theory, which was not a theory of com-
munication but rather provided a partial psychological explanation for out-group prejudice,
founded on economic experiments. I will cover Tajfel’s work shortly.

3Measures that have been developed for intercultural factors reveals the fields” continued
preoccupation with adult, business settings [274]. For instance, the intercultural development
inventory (IDI) requires certification, requiring thousands of dollars to attend a training work-
shop and be certified.
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ture as “not only to the shared life patterns within a society or a nation, but also
to those patterns associated with distinct ethnic (including national, racial, re-
ligious, and language-based) groups within a society” [238]. According to this
definition, “any interpersonal encounter is considered ‘intercultural”’ whenever
the interactants differ, or perceive themselves to be different from each other, in
cultural or subcultural backgrounds... two core terms, intercultural conflict and
intercultural affiliation, are likewise employed to represent related terms such
as ‘interethnic,” “interracial,” and ‘intergroup’ conflict and affiliation.” Of key in-
terest here is the phrase “perceive themselves to be different,” which harkens
to the intergroup literature: whereas Hall studied communication between dif-
ferent, largely geographically or ancestrally separate peoples, today the term
‘intercultural” includes people who may not be very different but merely per-

ceive themselves to be.

2.1.3 Intergroup

The term “intergroup” was popularized by social psychologist Henri Tajfel’s
social identity theory, introduced in a paper in the journal Social Science Informa-
tion and elaborated from a series of experiments presented in Scientific American
[392, 393]. Tajfel was concerned with how individual, psychological processes
interacted with the phenomenon of out-group attitudes and behavior found
across many societies “be they racial as in the U.S,, religious as in Northern
Ireland or linguistic-national as in Belgium” [392, p. 96]. To study the effects
of categorization and in-group identity on intergroup attitudes, Tajfel’s “mini-
mal group” experiments showed how the mere act of (explicit) categorization

produced in-group bias. The experiments involved a homogenous set of par-
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ticipants (e.g., all males from a dormitory in Bristol, UK), and two phases. In
the first, participants were categorized into two groups according to “guess-
ing numbers of dots... or expressing preference for the paintings of one of two
fairly abstract painters” [393]; in the second, they allocated money to random-
ized, anonymous peers whose only identification was group affiliation. A clear
significant and reproducible in-group favoritism was observed. Results were
significant in that, unlike prior work, great efforts were made to isolate con-
founding variables; “subjects were never together as a group; they neither in-
teracted nor did they know who was in their own group and who in the other;
there were no explicit social pressures on them to act in favour of their own
group; and in no way was their own individual interest engaged in awarding
more money to a member of their own group” [393]. Building on this seminal
study, Tajfel hypothesized that individuals have a psychological need to catego-
rize peoples (including themselves) into group affiliations in order to maintain
social cohesion and that this need in part contributes to in-group favoritism
and out-group attitudes and behavior, apart from any historical or “objective”
meaning for conflict. Interestingly, the original 1970 paper attaches this need
to “social norms” present in “most modern societies,” showing Tajfel uneasy to
cast “groupness” as a cognitive universal (e.g., Tajfel uses the phrase “suppos-
edly universal human drives” [392]). Grounded in categorization and economic,
quantitative experiments, social identity theory is thus “not a communication

theory,” but rather represents a theory of social behavior and cognition [150].

Related to, and in many cases growing out of, social identity theory is a
broad literature studying the cognitive basis of bias and prejudice. The social
psychologist Mahzarin Banaji, for instance, advanced the notion of “implicit

bias,” prejudices one holds subconsciously towards individuals one perceives to
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be members of a social group [170]. Prejudice reduction experiments, whether
minimal group, implicit bias, or other types of experiments, form the bedrock
of the prejudice reduction literature and provide cognitive basis for prejudice
and the role of categorization in discrimination [68]. Yet as a review of the
prejudice literature remarks, it is unclear how directly controlled studies cor-
respond to conflicts in the wild [313]. As sociologists and anthropologists have
argued [45, 68], the difference between artificially constructed groups and so-
cially constructed, pervasive categories is that identifications are static in exper-
iments, whereas they are dynamic and co-constructed in real life. Conflicts in
the wild often emerge around the boundary of the category’s definition, a diffi-
culty not usually captured in experiments where groups are created on-the-spot.
Moreover, while some believe implicit bias is at the heart of “microaggressions”
towards individuals perceived to be members of non-dominant social groups,
some studies conflict with this intuition, showing no correlation between im-

plicit bias and explicit discrimination [313].

Many interventions aimed at bridging differences and reducing prejudice
are based on the intergroup literature. One of the most prominent practical
frameworks has been intergroup dialogue (ID) programs. Developed at the
University of Michigan in the late 1980s in the context of a waning civil rights
movement [175], ID is “a facilitated group experience that may occur once or
may be sustained over time and is designed to give individuals and groups a
safe and structured opportunity to explore attitudes about polarizing societal
issues” [118]. The approach has spread across U.S. universities; for instance,
Cornell has its own version. Informed by extensive empirical studies in preju-
dice reduction and multicultural education, ID programs at large adopt a “dual

category” approach where both subordinate and superordinate identities are
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recognized and emphasized (e.g., one’s racial or ethnic identification and their
shared belonging to a school) [313]. For instance, Gurin et. al’s study bifurcated
participants 50/50 between “white” and “people of color” and based statistical
analyses, as well as intragroup dialogues, on this separation [175]. Intragroup
dialogues are seen as important for preparing students for intergroup dialogue
and mitigating, e.g., anger, silencing, and other emotional behavior that shuts
down dialogue prematurely. A multi-institution, longitudinal, mixed methods
study by Gurin et al. demonstrated the method’s success in reducing prejudice
and increasing empathy between university students. As I shall argue in Chap-
ter 4 in reference to the Fields’ concept of racecraft, these intergroup approaches
have the potential risk of reifying static and ontological notions of race that have
been critiqued by other scholars [206, 152, 142]; in particular, there appears noth-
ing strange about the act of “racial” sorting into a priori identity groups, whether

to the participants or the researchers themselves.*

The challenge of ID programs is that facilitators must be highly trained or
else reverse outcomes may occur. This is especially the case since intergroup
dialogue, by contrast to, for instance, sports for development programs, has
no external task that distracts from tension. Yet facilitators often either do not
have the time for adequate training or their methods vary widely [118, 171].
This is a similar issue to diversity training for large organizations, where the
superficial nature of lessons and/or facilitator skill has been shown to lead to
nonexistent, often even negative, outcomes across two large literature reviews
[55, 120]. These issues reflect the dangers of learning about power differences

and social groups that does not involve deeper empathy and understanding

4This is analogous to the similar reifications present in HCL; e.g. in Kleinberg et al. [240],
whose mathematical analysis of affirmative action assumes the goal is the “equality;; of racial
groups —a goal that appears absurd when we realize that race is constructed through asym-
metric rules on descent. See Chapter 4.
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between individuals but rather serves to stereotype certain groups and advance
a legal agenda by creating the appearance of a commitment to diversity and
inclusion [120, 409]. It is important, as we will see, that intergroup contflict is

seen as mutually constituted (as Tajfel originally posits [393]).

Connecting back to the intercultural literature, there appears to be a large
overlap between studies mobilizing the terms “intercultural” and “intergroup”
today [150], as deficiencies in one theory seem to be resolved by reference to the
other (for intercultural field learning from intergroup, see [76]; for the reverse
pollination, see [382, 175]). Thus, we may hypothesize that these fields study
fundamentally similar phenomena, but were biased by their original context,
methods, and analytic focus [150], and are therefore developing asymptotically
towards one another similar to how the fields of inter-racial/ethnic/national

conflict overlap [68].

2.2 Motivating Educational Frameworks

Having reviewed key terms of “culture,” “intercultural” and “intergroup,” I
now cover four main literatures to ground the educational aspect of intercul-
tural computing: cultural-historical activity theory, constructionism, peace ed-

ucation and prejudice reduction, and models of intercultural development.

2.2.1 Cultural-historical activity theory

A body of early work in CSCW and CSCL applied cultural-historical activity

theory [228] (CHAT) to the design of educational innovations involving technol-
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ogy. Pioneered by Russian psychologists Vygostky and Leont’ev, and extended
by scholars such as Engestrom [132], Cole [94], and Gutiérrez [177], CHAT em-
phasizes learning as a process of social and cultural activity, rather than individ-
ual construction, in which “diversity is [viewed as] a resource and heterogeneity
is a design principle” [177, p. 216]. These approaches gained particular currency
in literacy education to address or account for apparent disparities without re-

sorting to casting certain cultures as “deficit” [177, 94].

A prime application of the CHAT approach can be found in the Fifth Dimen-
sion after-school program [94], which spanned twenty years of research and
involved multiple institutions, academics, and community stakeholders. A cen-
tral goal of the Fifth Dimension was diversity in all respects —in the available
activities, in the participants (at all levels, from student to institutional), and in
the adaptability of the innovation to local context. Michael Cole, the leader of
the project, noted that there are two prevailing views on diversity —"make it
go away” (through assimilation) or “make use of it” as a “resource” for recipro-
cal exchange [93]. A decade after this statement, a review by UNESCO of sus-
tainable development programs found that cultural differences remain all too
frequently “interpreted as constraints to progress towards sustainable develop-
ment... [i]Jntercultural dialogue is rarely seen as an opportunity to explore new
creative ways to live or construct a sustainable future amongst diverse groups”

[400].

CHAT has arguably three tenets: first, internalization/externalization,
which accounts for how cultural practices are internalized and become tacit,
while the process of their externalization can help create new artifacts/tools or

methods (Engestrom 1999). Second, mediating artifacts/tools take center stage
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in CHAT. Learning always arises from sociocultural origins, with particular em-
phasis on relationships between people and social transfer of knowledge (e.g.,
peers or teacher-peer) through situated activity. Third (and arguably the most
important principle for this thesis) is CHAT’s reframing of normative conflict
and contradiction as resources for learning. For instance, in reference to Cole’s
work on the Fifth Dimension, Gutiérrez et al. emphasize how “contradictions,
experienced by us as conflicts” can be “a major source of change” [177, p. 217]
and how diversity may be used “as a resource” to address program goals, pro-
vided participants are primed to see it as a resource. Said more explicitly, a
CHAT perspective recognizes how the many frictions, breakdowns, and gaps
present in classes —experienced often as “conflicts” —may instead be mined
as resources for learning outcomes, rather than detriments to fully “solve” or

overcome.

2.2.2 Constructionism and cultural constructionism

Computing education (alternatively called CS education) is a field arguably
founded by (or at least first articulated by) Seymour Papert. His influence over
the field continues to this day [12]; thus it is important to compare his theories

of learning with others such as CHAT.

Influenced by Jean Piaget’s constructivist learning theory, Papert devel-
oped a discovery-based learning pedagogy that he called “constructionism”
and an associated educational programming environment called LOGO. The
LOGO system allowed children to explore programming through (what Papert

called) “body-syntonic” (embodied) reasoning with “turtles” that moved and
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drew graphics on computer monitors in response to parametrized commands
[314]. Papert’s “constructionism” was a modification of Piaget’s constructivism,
which focused on individual learning processes through discovery, play, and
exploration, instead of emphasizing any particular social or cultural underpin-
nings of activity. Unlike Piaget, Papert emphasized the influence of cultural arti-
facts in the learning process.” He argued for the idea of “child as epistemologist”
who “appropriate... materials they find about them, most saliently the models
and metaphors suggested by the surrounding culture” [314, p. 19]. Here, cul-
ture is initially invoked to mean the tools, symbols, and materials provided to
the child by their community. In this manner constructionism has a similar
emphasis to CHAT on the role of artifacts and tools in the learning process; un-
like CHAT, however, constructionism is relatively silent on social interactions
among and between children. For Papert, where childrens” developmental de-
ficiencies appear —say in understanding “permutations and combinations” in
mathematics (p. 20) —these differences may sometimes be attributed to “our
culture’s relative poverty of materials” for playing around with those concepts

(p- 7). He argues new computer-based tools can address this poverty.

Critical scholars in HCI often begin with a caricature of constructionism that
assumes Papert believed children would best learn by themselves, away from
teachers or adults [12, 80]. For instance, Chan argues that Papert “viewed chil-
dren as innately able to teach themselves” and implies that that view led to the
(failed) ideals of Negroponte’s One Laptop Per Child project in how it over-
looked teachers [80, p. 187]. Although Papert believes young children may

“spontaneously” learn very basic concepts, such as counting or ordering objects

>Where I am at variance with Piaget is in the role I attribute to the surrounding cultures
as a source of these materials... I give more weight than [Piaget] does to the influence of the
materials a particular culture provides” [314, p. 7, 20].
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[314, p. 20], he states emphatically that “teaching without curriculum does not
mean spontaneous, free-form classrooms or simply ‘leaving the child alone’
[but] supporting children as they build their own intellectual structures with
materials drawn from the surrounding culture” [314, p. 30-1]. Clearly, then,

Papert did not argue for classes free of mentors.®

In using the term “culture,” Papert denies that he is “trying to contrast New
York with Chad [in Africa]”; rather, he is “interested in the difference between
‘precomputer cultures’ (whether in American cities or African tribes) and the
"computer cultures’ that may develop everywhere in the next decades” [314, p.
20]. For Papert there is something about introducing the computer that alters
culture, and the computer is sufficiently new that it does not matter what so-
ciety, specifically, one introduces it to. The implication is that “precomputer”
cultures are, in one central respect, impoverished, and that this deficiency in
the tools, symbols, and materials of populations across the world may be re-
solved through the introduction of computational tools. Aside from a possible
colonial impulse embedded in this assumption [12], Papert articulates through-
out Mindstorms what he believes computer tools will provide: “[t]he intellec-
tual environments offered to children by today’s cultures are poor in opportu-
nities to bring about their thinking about thinking into the open...” (p. 28; emph.
added). Thus Papert is concerned about metacognition (in the common sense
definition of ‘thinking about thinking’), and in his view, all societies before the
computer struggle to teach metacognition. These uses of the term “culture,” as

Ames points out, risk “reduc[ing] the social world to a toolbox where children

®When I asked Mitchel Resnick and Natalie Rusk (the spiritual successors of Papert) at MIT
about OLPC, they lamented the program, arguing that it didn’t embody constructionist princi-
ples and that they had sought to distance themselves from the project. Unfortunately, neither
Chan nor Ames seems to have interviewed actual constructionists about their views on OLPC
[80, 12]. This may lead to a biased feedback loop where artifacts [like OLPC laptops] “having
politics” actually is the authors’ politics “having artifacts” in disguise [220].

23



might encounter gadgets that help them learn mathematics and logic, stripping
away the complex social motivations and interactions that constitute culture”
[12, emph. added]. Interestingly, Papert does not claim there is culture built
into or embodied by the computer, stating emphatically that “[t]he computer is
not a culture unto itself, but it can serve to advance very different cultural and
philosophical outlooks” (p. 31). The computer —and, apparently, any periph-
erals required to communicate with one —is not “a” culture, but can embody a

cultural perspective.

Papert’s positive framing of “computer culture” in Mindstorms appears in-
verted later on in Turkle and Papert’s paper on epistemological pluralism [407].
Turkle and Papert find that the “computer culture” has “discrimination... that is
determined not by rules that keep people out but by ways of thinking that make
them reluctant to join in,” citing how a female student felt side-lined in their
computing classroom. Contrary to Papert’s position in Mindstorms, here the
“computer culture” is no longer advanced by simply the introduction of com-
puters, but rather refers solely to social dynamics outside of material factors:
“[a]lthough the computer as an expressive medium supports epistemological
pluralism, the computer culture often does not.” Here, the “computer culture”
refers to the social world that the computer is embedded in; specifically, the
practices and values instilled by teachers in CS courses that dictate how ‘best’

to program.

Ultimately, while there are inconsistencies in Papert’s arguments and def-
initions, there is less stark an opposition between cultural learning theories
like CHAT and constructionism than is often assumed. And indeed although

Vygostkyian sociocultural theories are often put in opposition to Piaget’s con-
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structivism, Paul Cobb argues that the two perspectives are complementary in
that each “tells half of a good story” [87, p. 17]: “Together they encompass
the actively cognizant student, the local social situation of development, and
the established... practices of the wider community” [88, p. 380]. Following
the research of Paula K. Hooper —herself a student of Papert’s —we may refer
to this reconciled perspective as cultural constructionism [203], aligning with the
“cultural constructivist” perspective of Scott, Cole, and Engel [375]. Cultural
constructionism emphasizes the role of the learner in constructing their knowl-
edge through artifacts and technologies and their expression (and exploration)
of their cultural identity/ies through this construction, while also theorizing the
mediating activity system and adult influence as cultural and inseparable from
cognition. This is important as the influence of sociocultural context, relation-
ships and motivations in learning was arguably downplayed in early construc-
tionist theory [203, 12]. The certain differences between constructionism and
CHAT may therefore be the former’s emphasis on individualistic learning —on,
let us say, a cognitive approach to learning —at the expense of social relations,
and the latter’s emphasis on social learning, that may nonetheless underesti-

mate or under-theorize individual learning.

Today, Papert’s ideas continue to extert a large influence on the field of K-12
CS education. What Papert originally meant by “computer culture” was per-
haps succeeded by the terms computational thinking, introduced by Wing, and
computational learning, developed by Papert’s spiritual successors Resnick and
Brennan [63]. Computational thinking “involves solving problems, designing
systems, and understanding human behavior, by drawing on the concepts fun-
damental to computer science” [430]. Computational learning includes com-

putational thinking, but reorganizes the concept into three aspects: “concepts,
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practices, and perspectives” [63]. Concepts include the usual programming con-
structs of sequences, loops, events, conditionals, and operators, as well as data
structures and pattern matching. Practices describe strategies students deploy
for writing programs, such as iteration, modularization, testing and debugging,
and reusing/remixing others’ code. Perspectives includes developing curiosity
around how things in the world work, becoming producers rather than passive
consumers of computing, and connecting with others through the development
or publishing of computational artifacts such as games. Here, “perspectives’
appears like an attempt to bring social relations back into constructionism (al-
though, for scholars like Kafai, it does not go far enough —she instead proposes

the term ‘computational participation’ [224]).

2.2.3 Bennett’s Model of Intercultural Development

Emerging from Hall’s intercultural communication was a subfield specializing
in how individuals become “competent” in interactions across difference [50].
Sociologist Milton Bennett’s “Developmental Model of Intercultural Sensitiv-
ity” specified six stages of development moving from ethnocentrism to eth-
norelativity: Denial, Defense, Minimization, Acceptance, Adaptation, Integra-

tion:

1. Denial of cultural differences, where one’s worldview is considered equal

to reality. Contact with outsiders may presume them subhuman.

2. Defense of one’s cultural worldview against outsiders, including denigra-

tion of differences or assumptions of superiority.

2.1. An alternative stage here is Reversal, which involves the extreme
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denigration of one’s own culture and assumed superiority of the
outside culture. This for Bennett is also “defense,” because those
caught up in the reversal stage are defending a binary, oversimpli-

tied good /bad interpretation of the difference.

. Minimization of cultural differences: Cultural difference is acknowledged
but downplayed in favor of universal humanity. Similarities between cul-

tures are overly emphasized.

. Acceptance of cultural difference: differences are acknowledged and re-
spected. This involves acceptance of differences in communication styles
and non-verbal behavior, in addition to explicit differences like language

or dress.

. Adaptation to cultural difference: beyond acknowledging differences, one
can empathize with the stranger’s worldview such that they shift between
worldviews (e.g., an American in Japan begins to bow and speak quietly in

certain situations where in America they would be boisterous and loud).

. Integration of cultural difference. Roughly speaking, the individual sees
themselves as the other: they integrate multiple selves or identities (per-
haps even calling themselves, say, “German” after a life in Germany de-

spite living in the U.S. in their formative years).

Intercultural development augments CHAT and cultural constructionist the-

ories to focus on how people learn about difference and how to navigate it

—broadly, to ‘think about their cultural thinking” [51]. In addition to learning

about culture, it encompasses the making of friends across social differences,

especially across societal divides and power hierarchies, and conflict resolution
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skills. Intercultural development, I shall suggest, is a relevant mode of analy-
sis not just for the present day, but for historical analysis as well: the degree
of a person’s intercultural development could determine what ways of being
and knowing they supported or shunned.” Although these stages are by no
means absolute, [ have found them to be extremely useful in characterizing and

explaining behavior of not just children, but adults as well.

2.2.4 Critical Peace Education

Although this thesis does not focus on peace education in particular, the work
of Zvi Bekerman has had an outstanding impact on my thoughts, and de-
serves an overview here. In brief, in international settings “peace education”
has come under fire for doing nothing to change political dynamics that repro-
duce conflicts. Instead of imagining futures together, possibly by destabilizing
existing power-laden social structures and group categories, peace education
may unwittingly seek to maintain the order of things. After decades of work
in Israeli-Palestinian schools that took an “intergroup dialogue” approach to
peace-building, Bekerman realized that adults were (sometimes unwittingly)
maintaining the social structure through group-making boundary work (for in-
stance, how they separate the children during special events or respond emo-
tionally to certain topics) [47]. Despite the good intentions of the school, chil-
dren then learn these “tacit” or hidden cultural rules that reproduce the broader
social divides by capitulating to their premises of difference. Unlike many peo-

ple perhaps in education today, Bekerman became skeptical of emphases on

"Por instance, perhaps Bertrand Russell’s relative openness to East Asian cultures, among his
other progressive stances, made him more amenable to Gottlob Frege’s two-dimensional logic
notation, which other European men of the time denounced or overlooked for how it jarred
with their cultural conventions of the aesthetics of scientific practice.
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social “identity,” arguing that “identity wins” over peace in classrooms where
it is overly emphasized, or where adults are motivated to perpetuate their static
notions of identity by projecting them onto children. Like infrastructure, here
groups like Palestinians and Jewish people “are not a “‘what” but a ‘when” and
a "how’” [46, p. 80]. For Bekerman, the solution was to “help our children be-
come ingénues about the ways in which social categories are constructed and
engineered by nation-states” and to look for ways to “sustain children’s cul-
tures” especially when they conflicted with adults’ rigid, ossified ontologies of
difference (p. 81). Real social change in a society, therefore, will necessarily

cause discomfort to adults in that society.

2.3 Why “Intercultural” Computing?

Now that we have overviewed some key terms and frameworks, what do we
call a computing education focused on issues of social and culturally-derived
tension? Do we invoke “intergroup” —following the lead of intergroup dia-
logue programs —or, rather, “intercultural”? Or something else, such as “criti-

cal computing education” [409]?

To close this section, I argue for an “intercultural” framing to characterize my
work going forward. For describing social dynamics in educational contexts,
there are three points for choosing intercultural over intergroup. It suffices to

provide an outline of the argument:

1. When deployed in analysis, “group” categories risk reifying boundaries

of socially constructed difference by making the analytic mistake of using
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the interventionists’ categories to describe members’ categories [68]. Es-
pecially in educational settings with children and adolescents, the usage
of group “identity” can sometimes confuse “being” a member for “becom-
ing” a member. This may lead to circular analysis. Unreflective applica-
tion of group categories can then overlook cultural difference (including
by otherwise well-meaning people), because they often suggest a bijection

between group and culture categories.

2. In scholarship on equity and education, particularly the works of Lisa
Delpit and Prudence L. Carter, tensions involving “race/ethnicity” in
the U.S. are often code for, and obscured by, associated cultural differ-
ences [116, 77]. Thus, developing students’ respect for differences is often
framed by equity scholars in notions of “cultural flexibility” (advanced
by Carter [77]) or intercultural learning, rather than intergroup learning,
even when racism is the salient issue, and even in the context of U.S. education.

(Equating race with culture is also a type of racecraft [142]; see Chapter 4.)

3. The generative definition of culture established by postcolonial and
cultural-historical theories offers a rich theoretical grounding in materi-
ality that is deficient in the intergroup literature. Activities, pedagogy,
teachers, and technologies often embed and signal “group” boundaries
by associations with cultural practices. Thus, culture is prior to group, in

that the former generates the conditions for perception of the latter [45].

This argument would proceed by outlining work in, and criticism of, the
terms “culture” and “group” across disciplines. These terms (and their relatives

et

“race,” “ethnicity,” and “identity”) have been contested in social science disci-
plines by social constructivists, post-structuralists, and other feminist and crit-

ical race theorists [74, 64, 199, 68, 45, 3]. Yet, though undeniably flawed, social
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categorizing terms —as glosses for more complex phenomena —also perform
valuable work for academics and practitioners alike [64, 94]. In opting for a gen-
erative definition of “culture,” rather than relying purely on group categories,
I thus do not mean to avoid the term “intergroup” or using group’ categories,
but rather to choose culture as the primary theoretical lens for my research.® Per
point 3 above, this also enables my research on the material aspect of coding

(Chapters 5, 6) to integrate nicely with my educational work.

2.4 Conclusion

In this chapter, I reviewed several key terms, pedagogical and developmental
frameworks that inform my work. At points throughout, I suggested that where
one literature falls short, another may pick up the slack. In the end, I chose an
intercultural framing, over an intergroup (or identity-based) framing. We shall
return to questions of identity in more detail in Chapter 4, where I draw from the
Fields’ book Racecraft to ground an activity for teaching the social construction

of race.

8For instance, I may make reference to an “Hispanic American” group but my lens provokes
me to investigate the cultural difference and heterogeneity behind this “group” as it relates to
the populations under study; for instance, a Euro-American student could adopt elements of
popular Hispanic American culture.
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Programming and/in culture
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CHAPTER 3
INTRO PROGRAMMING EDUCATION AS A SITE OF INTERCULTURAL
LEARNING

A growing movement is pushing for the integration of computer science (CS)
into K-12 schools in the U.S. and beyond. Alongside widespread calls for equity
and diversity in the tech sector, and propelled by government policy and fund-
ing decisions, computing education has become a prime site for the ongoing
resolution of historical disparities in STEM fields defined along categories such
as race, ethnicity, and gender [409]. Yet emerging work in diverse computing
classes (and corporate settings) suggests challenges are often not resolved sim-
ply by bringing people together, whether in person or over the internet, even
when programs appear to be focused on resolving disparities [13, 294, 366]. As
the education scholar Prudence L. Carter remarks, “diversity is necessary but
not sufficient for inclusion” [77]. Even when problems of access or participation
to computer science are resolved, how can we address the “all too common”

[366] sociocultural tensions that reproduce and entrench existing disparities?

These are not fundamentally new challenges, although they are relatively
less explored in computing education research. Academics in intercultural and
multicultural education, intergroup dialogue, peace education, and prejudice
reduction (to name a few) have all studied problems of difference and tension,
connected by the shared tissue of intergroup contact theory. Moreover, schol-
ars in education researching K-12 classes and institutions have spent decades
studying (and debating) equity pedagogy and policy (see, e.g., [116, 77]). What
might the computing education field learn from this varied work? And how can

these lessons and pedagogy be integrated into computing education by identify-
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ing and leveraging alignments between computational and intercultural learn-
ing goals and pedagogy? Is there a role for computing in fostering “critical de-
sign experts,” as Bekerman and Zemblyas hope for in critical peace education

[47]?

In this chapter, I explore how introductory computing education courses
might support intercultural learning. My empirical work comprises two stud-
ies in Kenya and the U.S. The first study examines the Nairobi Play Project,
an intro computing program for refugee youth in Nairobi and Kakuma refugee
camp, Kenya, through ethnographic fieldwork across two program cycles. The
second study examines social dynamics in a U.S. 6th grade classroom for five
weeks in early 2020, until the onset of the COVID-19 pandemic disrupted pro-
ceedings. I describe the study contexts and methods, report findings, and then

provide some overall takeaways.

3.1 Study Contexts, Programs and Methodologies

3.1.1 Nairobi Play Project

Program Design

The Nairobi Play Project (NPP) was designed as a progressive pan-African ed-
ucation model, theoretically grounded in critical pedagogy, constructionism
[223], and intergroup contact theory.! The goal of the model is to cultivate in-

tercultural learning between communities in or at risk of conflict. This iteration

LThis section was originally co-written with Ariam Mogos.
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of the program was funded by The United Nations Children’s Fund (UNICEF)
Kenya Country Program, and implemented by Kenya-based non-profit orga-
nization Xavier Project in coordination with the Nairobi Play Project team and

local community-based organizations.

NPP was designed as 30 after-school sessions which run 5 days a week for
6 weeks, targeting 24 students and 2 informal educators per class. Each session
is 2 hours long and generally starts with a warm-up activity or icebreaker, fol-
lowed by a creative computing or game design session. The activities involve
intercultural exercises, computational thinking and game design, and the cur-
riculum strives to integrate these to cultivate problem-solving, self-expression
and iterative practice. Programming activities occur in Scratch, a widely used
graphical programming environment for early education [354]. Many activities
are localized (e.g., redesigning the East African game Mancala). The program

occurs in three sequential phases:

¢ Phase I of the program centers on building trust and friendship between
students, introducing students to game design and storytelling, and learn-
ing basic computing concepts through remixing, debugging and mak-
ing projects. This phase also involves a dozen warm-up activities, de-
signed to enhance intercultural dialogue and teach computational think-
ing. Throughout Phase I, students are also asked to program in pairs;
teachers were instructed to pair across nationality and tribe (although

many paired across gender identity and made ad-hoc pairing decisions).

¢ In Phase II of the program, students decide on a community-based theme
for a game they will build. After an introduction to real-world figures

about the Sustainable Development Goals [296], participants work in their
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teams to investigate and negotiate the who, what, where, when, and why

of their game through discussion, peer interviews, and personal stories.

* In Phase III of the program, students create a fictional narrative using
what they decided in Phase II to construct their game. Team members
take on different responsibilities (coder, artist, writer), switch roles when
prompted, and check in with each other until the project is complete. The

program closes with a celebratory playtest.

While the core curriculum remains the same across classes, each teacher was
instructed to interpret and adapt the curriculum according to their own under-
standing and in response to emerging local conditions and constraints. The five
classes reported here were spread across two cycles (February-April and June-
July, 2018) with a round of teacher professional development having occurred

between the cycles.

Context

Refugee communities in East Africa are a diverse mix of cultures cutting across
nationalities, tribes, languages, and religions. My Kenya-based study was con-
ducted in the two geographies in which NPP operates: the more rural area of
Kakuma refugee camp, and two urban communities of Nairobi. A total of 8
teachers and 232 students participated in NPP classes, split up into five sites (3
in Kakuma; 2 in Nairobi) and two cycles (120 students in Cycle 1; 112 in Cycle 2).
All but two student participants were refugees. NPP recruited teachers through
a partner NGO and paid stipends as allowed by the Kenyan government. While

a few teachers dropped out due to repatriation, migration, or change in employ-
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ment, all teachers appeared highly motivated by the intercultural component of

the course and deemed it relevant to their lives.

In Kenya, many refugee children grow up and attend school entirely in
refugee camps or communities [270, 280]. Pedagogy is often based on colonial-
era educational models [148]: student-teacher ratios of 100:1 are common, and
the goal is to pass standardized exams and obtain certificates to justify knowl-
edge to employers [280]. Forms of creative problem-solving, indigenous knowl-
edge, or intercultural understanding are typically neglected or discouraged. As
one participant in the study summarized: “In school, the teacher is writing here like
this (points to blackboard), and we are trying to copy it [in our notebooks]. ... If you

want to discuss, the teachers will not allow it.”

Three of the classes I observed took place in Kakuma refugee camp, estab-
lished in 1991 by the Kenyan government to house migrants fleeing from con-
flicts in Sudan, Ethiopia, and Somalia [73]. Located in the arid desert near
Kenya’s northwest border with South Sudan and Uganda, today Kakuma?
houses approximately 185,000 refugees and is one of two areas where refugees
can live legally in Kenya [234]. Kakuma faces everyday conflicts from over-
crowding, malnourishment, tribal differences, gender-based violence, and

camp-host frictions [263, 104, 204].

I stayed at a compound in the nearby town of Kakuma (15 minutes” drive
away from Kakuma Camp 1), organized by a partner NGO. I reached the town
by driving across around 100km of dirt roads from the nearest airport. The
United Nations forbids non-residents from entering the camps after dusk, as it

is dangerous; for instance, residents told me they avoided using backlit devices

2We refer to the refugee camp area as “Kakuma” throughout, but the camp area is distinct
from the town of Kakuma.
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at night because they worried the light would attract thieves. The sites were
in isolated buildings behind fences, and youth were often seen playing football
outside these areas at dusk. Quality food is scarce, consisting of UN-supplied
rice and cabbage, chipati, small quantities of tomatoes and onions, pasta, eggs
with discolored yolks, and often unidentified “meat,” with fruit being rare and
costly. Of note is the large presence of the Turkana, the pastoral host community,

which is in occasional conflict with the refugee population.

Although refugees have no legal status outside camps, many live and work
in Nairobi, the site of the two other classes I observed. Life is tenuous and hard,
as job opportunities are often low-paid and scarce; police corruption, xeno-
phobia, and discrimination towards refugees is also widespread and growing
[73, 323]. The refugees I encountered avoided taking lunch, only having a light
breakfast and evening dinner. To support themselves or their families, students
would take menial jobs, with boys mentioning construction work. Most stu-
dents were in school, but a few were not and suggested that the class served as
a distraction from realities at home. Classes were conducted in slum areas in
both East and West Nairobi. These areas were both located beside marketplaces
and were contained — as is common in Kenya — inside gated compounds with
security officers present. At low traffic, both sites were at least 45 minutes away
from the centrally-located, upscale gated community where I lived. For refer-
ence, a five-minute drive from one of these sites is an area where ethnic violence

broke out in recent elections.

Class times were coordinated to occur after school. In Nairobi, teachers re-
cruited students by posting sign-up sheets and posters in these areas, targeting

a 1:1 gender ratio. Gender representation was balanced except for one class in
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Cycle 2 which was majority male. Students came from areas around each site
and transit costs were chief barriers to bringing in populations outside the lo-
cal area. In Kakuma, teachers participated through refugee community-based
organizations (CBOs). To recruit students, teachers spread the word by visiting
nearby schools, coordinating with principals and school teachers, and putting
up posters. NPP targeted a female-to-male student ratio of 3:2 in Kakuma and
came close to reaching this target. Student nationality included Democratic Re-
public of Congo (DRC), Somalia, North and South Sudan (henceforth, S. and N.
Sudan), Burundi, Rwanda, Tanzania, and Ethiopia, across varied tribal identi-
ties. Across all sites, literacy levels varied widely and most participants spoke
at least two of three languages, to varying degrees of aptitude: English, Swahili,

and a tribal language.

Methods and data sources

My investigation was qualitative, with data from a variety of sources: field-
notes, semi-structured interviews with teachers and students, teacher self-
reporting on a shared WhatsApp group, and pre- and post- surveys. For teach-
ers, | asked for written consent, and interviews were audio-recorded. With the
exception of Cycle 1 students and one Cycle 2 student, all student interviews
were conducted on-site during class. I sought oral assent and hand-wrote all re-
sponses. Student interviews were in most cases conducted with a Swahili trans-
lator present, and some students switched between English and Swabhili in their
responses. Participation in the research component was voluntary, having no
effect on students’ ability to participate in activities. I offered small refreshment

(tea, lunch, drinks, snacks) to participants when possible.
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I gathered field-notes from the first eight days of Cycle 1 in Nairobi and pro-
fessional development sessions in Nairobi and Kakuma. To preserve anonymity,
we often refer to broad characteristics and use abbreviations: sites in Nairobi are
N1, N2; sites in Kakuma are K1, K2, and K3. Students are labelled S1, S2, and so
on, and teachers are labelled T1, T2, etc. Thematic analysis of coded fieldnotes
during the first cycle provided grounding [82] for composing questions and ob-
servations for the second cycle. During Cycle 2 we gathered fieldnotes across
all 5 classes, conducted semi-structured interviews with 8 teachers and 24 stu-
dents (13F/13M; 13-19 years old), and held 4 informal follow-up interviews and
phone calls with teachers. In addition, a teacher held brief informal interviews
with 2 students. During Cycle 2, with the exception of N1, classes were com-
posed of 24 students selected semi-randomly from recruitment lists of at least 48
students at each site. The randomization procedure stratified by nationality and
gender to ensure diversity and reach gender targets. In addition to 302 pages of
fieldnotes (164 handwritten, 138 typed in Arial 12pt. with standard margins),
I took photos of documentary material and sketches of seating arrangements.
Fieldnotes for Cycles 1 and 2 complemented one another by switching primar-
ily from verbal to behavioral observations. In addition, teachers administered
pre- and post- surveys. Although significant challenges hampered collection
of all surveys, I include open-ended responses from 43 student’s post-program
surveys from four sites (24 K1; 9 K2; 9 N1; 1 N2) in my qualitative analysis. All
data was analyzed through iterative thematic analysis, with a focus on intersec-

tions of intercultural learning with computing and pedagogy.
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3.1.2 U.S. middle school study

Context and Program Design

The U.S. school study took place at a middle school in the northeast, hereafter
called by a pseudonym, the Tangled Nest. Feeder schools included both ele-
mentary schools inside the county and rural areas surrounding it; racial demo-
graphics for the particular school are reported as 75% White, 10% Black, 7%
Asian, 8% Other for the 2018-19 year. Students comprise a range of socioeco-
nomic backgrounds, suggested by the feeder schools present, including rural,
predominantly White working-class youth. These proportions are somewhat
reflective of the racial/ethnic structure present in the larger U.S. society (e.g.,
in 2015 U.S. Census estimates, 73.3% of the population identifies as exclusively
White; at the Tangled Nest, 75% of each class identifies as exclusively White).
The school district that the Tangled Nest is a part of appeared relatively open
to multicultural pedagogy and made active efforts to include “social justice”
causes in programming; for instance, schools observed “Black Lives Matter”
week during Feb. 4-8, 2019, and a 6th grade class at the Tangled Nest examined

the effects of mass incarceration on youth.

The middle school year at Tangled Nest is broken into four 10-week peri-
ods. Two computing classes occur in each period, for a total of 8 classes. The
initial plan for this study involved 2 phases. In Phase I, I aimed to carry out
design-based research with ethnographic methods. Working with a teacher, I al-
tered activities from the MyCS [145] curriculum (which the teacher knew well)
to address intercultural goals, such as pair programming across difference or

drawing each other. The beginning of Phase I also left time for designing activ-
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ities concurrent with observations, adjusting and developing the curriculum as
classes unfold, which is consistent with a CHAT approach that views emergent
conflicts, breakdowns, or oversights as potential resources for learning goals
[94]. The goal was to have at least one full period of iteration before Phase I,
where building on my observations, I would implement a revised curriculum
and run pre-post test and post-survey to measure changes in attitudes towards
intercultural learning and any cross-group friendships that formed as a result

of activities.

The research study at Tangled Nest was unfortunately disrupted by the the
COVID-19 pandemic (and before that, a lengthy IRB process due to under-
staffing). Phase I of the study took place late January into March 2020 and
was disrupted mid-way, with ethnographic notes and observations for 5 weeks
instead of the full 10 weeks. Data included about four significantly modified
activities, including a new activity type, interdependent programming, which
emerged from observations of racialized inequities among pairs, particularly
white males and girls of color. Though sparse, this data was enough to spec-
ulate on new avenues for research that aim to reconcile equity goals with in-
tergroup contact in sites where dominant-grouped students have high levels of
prior expertise. The study could not continue remotely due to the school dis-
tricts” closure of research activity during COVID, and the fact that the teacher

retired shortly thereafter due to frustration with the COVID situation.

Methods and data sources

For the U.S. study, I collected data through fieldnotes, select images and videos

of student work, Scratch programs, and follow-up questions with students and
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the teacher. In addition, I wrote analytic memos and reflections. We sought writ-
ten consent from students and opt-out consent from parents with a letter that
was sent home with students a week prior to the study. Unlike in the Kenyan
study, I helped shape the activities and guidelines to align with intercultural
goals, such as pairing students across groups and activities which involved ex-
change of interests or backgrounds. All fieldnotes were coded in the bottom-
up, line-by-line procedure of grounded theory [82] with an emphasis on inter-
group dynamics, and emergent themes were established through affinity dia-
gramming. The codes and clusters of the U.S. study were then compared to the

tfindings of the Kenyan study, with a focus on peer interaction. Common codes

aws el

included: “budding bonds broken up,” “tensions over pairing,” “attending to
intergroup friction,” “bonding over breakdown,” and “spatial sedimentation.”
A U.S.-specific cluster is “white students centered” and a Kenya-specific code
is “difficulties hearing” (due to noise pollution). Survey data from the Kenyan
study was then compared to the resulting codes to identify common patterns or

find points of divergence.

Key to my U.S. analysis is a shift towards racial “identification” that ac-
knowledges how, in the terms of Ehlers and Piper, we are all passing [129, 335].
This challenging and divergent orientation seeks to be reflexive about its own
reification of race and to surface who is doing the identifying [25, 134]. As
I will explain in much more detail in Chapter 4, racial identities do not arise
naturally; they are developed under various social pressures and surveillance,
including researcher identifications, especially when participants are children
[253, 189, 206]. To combat reification, some scholars suggest to put racial iden-
tifications in quotes [320, 106, 134]. Here I follow Fields & Fields [142] in using

lowercase (e.g. “black,” “white,” “asian,” “hispanic”) to indicate a racial identi-
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fication of students, and I use uppercase to signal an identity.® In particular I use
“of color” for students who were not identified as white and culturally Euro-
American (i.e., a white Latina student would count as “of color”). Sometimes
even when I know how students identify, I am purposely less specific to pre-
serve anonymity, and use lowercase to surface the classifier-bundling work that
I (rather than the student) am performing. Note that concepts of “race” are in-
herently unstable [264], and even under the rubric of identity, many researchers
commonly shuffle students into monolithic racial categories despite additional
complexity or student resistance (e.g., [128, p. 1579-80]). The experimental prac-
tice deployed here is meant to be uncomfortable and challenge readers. To be
clear, however, I believe both identity /ification are important, and acknowledge
that this flattening is a limitation of my U.S. methods, where I did not collect a

pre-survey and was unable to follow-up with participants.

Finally, across my findings I often use the term “intergroup bonding,” and
one might wonder how “intergroup bonding” is observed or measured. Salient
indications of bonding emerge by paying attention to what students do, not just
during activities but in the micro behaviors and choices students make during
class transition periods and “gaps” in instruction [22]. These signals emerged
from my data coding and included: partners sitting together unprompted at the
start of class after they were paired together deliberately on a prior day; switch-
ing the mouse regularly during pair activities; positive body language (such as
feet turned towards a partner [297]); asking a group member for permission or
teedback; helping a partner with a non-computing task; who students exited

class with; and the presence of shared laughter or giggling (social laughter trig-

3We acknowledge the importance of capitalizing “Black” when referring to ethnic Black
American or diasporic identity. Our goal is rather to surface power in (imposed) identifica-
tion. This acknowledges that not all students perceived as Black may identify as such, although
people in the U.S. often assume they will [206, 253]. It also acknowledges our study limitations.
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gers powerful bonding agents in the brain [269]). The absence or opposite of
these signals could indicate a negative outcome —for example, pairs splitting up
as soon as the activity ends or students sitting at a distance from others. I ap-
pend the term “intergroup” to remind readers that each phenomenon occurred
over interactions across what adults perceive as a contextually-significant differ-
ence. Finally, when I use the term “preparatory privilege,” I mean students who
signalled prior knowledge —i.e., whether by correcting the teacher about an ob-
scure Scratch feature, announcing that they knew Scratch beforehand, bringing

up a game they’d programmed prior to the class, etc.

3.1.3 Positionality and Collaborators

The researcher and author of this thesis identifies a Euro-American male. He is
racialized as white in the U.S. and mzungu in Kenya, and students may react
to his presence in classrooms in significant ways that impact study observa-
tions. In Kenya, differences in language and power dynamics could affect un-
derstanding and interaction; he often followed up with students and teachers to
double-check emerging themes. In both computing contexts he may be viewed

as having authority by students by virtue of his racialization and gender.

For the U.S. study, he had prior knowledge of attending a public middle
school in a similar diverse socioeconomic region in the East Coast. The middle
school he attended had similar racial/ethnic make-up as the Tangled Nest, al-
though the divide was probably starker in the former, due to tracking. He was
surprised to recognize some of the same dynamics playing out in the Tangled

Nest, with some of the same popular culture like manga, Pokemon, Naruto,
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Battle Royale, and even the old cartoon Rugrats being popular among students.

This work could not have been carried out without several collaborators
and advisors. Most importantly I am indebted to Ariam Mogos, who founded
and designed NPP. Ariam is an Eritrean-American woman who has extensive
experience designing and delivering creative computing programs around the
world, including in Sierra Leone, as well as negotiating with international part-
ners. Professors Kentaro Toyama, at U. Michigan, and Steve Jackson, at Cornell,
served as advisors for the NPP ethnographic project, whether in analyzing field-
notes or offering day-to-day support, and I am indebted to their attention and
care. Professor Tapan Parikh offered support and feedback especially during
the U.S. study portion of the project, and the resulting TOCE paper. Together,
these three contributors are faculty members at U.S. universities who collec-
tively have several decades of experience in HCI-for-development research in
South Asia and sub-Saharan Africa. Of all of us, however, only Ariam speaks
one of the various non-English languages spoken by NPP students (Amharic)
and has lived experience with any of the cultures represented in the communi-
ties of study in NPP (not to mention experience as a woman of color in STEM).

These positionalities posed practical and ethical challenges during the work.

3.2 Findings from the Kenya Study

Here I recount findings from the Kenya-based study. Findings are catego-
rized into cases where (1) computing activities appeared to support intercultural
learning, (2) obstacles emerged to such learning that had to be managed or over-

come, and (3) moral dilemmas complicated normative accounts of intercultural
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outcomes. Note that while teaching computational thinking and programming
skills were key goals of the program, my focus here is squarely on intercultural

learning.

3.2.1 Computing Education in Support of Intercultural Learn-
ing

A consistent finding across our sites was that computers provided a powerful
incentive to gather across divides. Students often cited computers as the sole
reason they took the course, voicing a vague belief that computers will help
them in “the future” though many could not elaborate exactly why. Some took
pride in being the first in their family to use a computer, e.g., “Our father, our
grandfather, our tribes — they have never touched a computer.” Others emphasized a
desire for credentials as printed certificates. Both aspects seemed to justify the
participation of students to parents. T8 appealed to aspirations: “You have to [tell
parents] the advantage of [the computer]... “The future we are going in, it is all about
technology.”” In particular, the presence of computers could mitigate mother’s
concerns about their daughter’s continued participation. Somali girl 524 said
“My mother is okay with [the class] because I am the first person in the family using a

7
computer.

Once students were in the door, the question became how to engage them
in the program’s intercultural goals while satisfying their appetite for comput-
ing activities. By design, NPP blurred the distinction between the two goals:
activities sometimes had simultaneous intercultural and computational learn-

ing objectives. Both high tech games and low tech activities could put students
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Figure 3.1: Interactions over computing activities: (a) During a warm-up, a So-
mali girl instructs a Dinka boy to perform a procedure (reproduced, with names
altered); (b) One cross-cultural pair shares code to another pair by rotating their
monitor; (c) Coding part of a conversation about culture between characters.

in the shoes of another. For instance, “Empathy Notes” — labelled an intercul-
tural activity — asked students to write instructions to a fellow student which
that student then has to perform; these looked like pseudo-code (Fig. 3.1a). Un-
specified aspects of pseudo-code could surface culture; for example, a Somali
girl was instructed to sing, and proceeded to cover her face with her chador
and sing softly in Somali. Later discussion addressed how students felt writing
these notes. Many participants attributed later cross-cultural bonding to similar

low-tech warm-ups and their role in sanctioning intercultural interaction.

Mechanisms of bonding often seemed to revolve around shared humour aris-
ing from frictions between participant expectations and outcomes. While such
moments could be intentional (513: “sometimes, we create games that are funny”),
even in cases of communication difficulty, unintentional humour seemed to play
a more prominent role. Multiple teachers and students attributed the cause of
laughter to “mistakes” or incongruities (e.g., a mouse chasing a cat), backing up
tieldnote observations (T5: “Once they find a mistake or [do] something amusing,
they laugh, and sometimes they clap their hands.”). Breaking the silence between

them, a Congolese boy and a S. Sudanese boy started giggling as their cartoon
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cat became stuck in a maze wall: “We want to move it down but it moves up,” said
one. Breakdowns over low tech activities had similar effects; for instance, in one
activity two teams gave each other “code” to act out, resulting in laughter when
students made a mistake. The same activity seemed to prompt students to open

up and speak with one another.

Other moments of bonding appeared to be driven by limitations in resources
and infrastructure. Individualized devices such as the mouse, keyboard, and
earbuds presented bottlenecks that produced frictions between pairs negotiat-
ing for use. Students had to vie for control of a device, providing opportunities
for assertion and restraint, and for teachers to encourage active communication.

When asked how he made cross-cultural friends, S17 replied:

Our teacher told us you must sit together — for example you're Congolese,
you’re Sudanese. They mix us... We have to communicate. Because there is

only one computer. You cannot make something without the computer.

Communication could occur through nonverbal means, including in cases
of communication difficulty, but even when language was not an issue. For in-
stance, S6, a Congolese boy, said he was having difficulty conversing with 527,
a S. Sudanese boy, even though they were both fluent in English. “If there was a
mistake [my partner] doesn’t speak, but he shows (gestures as if pointing to the screen)
— shows the mistake. And he took the mouse [from me] and corrects the mistake.” In-
dicative of intercultural competence [113], S6 asked S27 to modify his behavior:
“His voice is low, is low!... If you say to him to speak loudly, he will at that time. But

not normally.”
Instances of pair bonding over a shared task could bridge what appeared
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to be even large divides. Several teachers began to see Somali girls in partic-

77

ular “sitting with boys from different tribes.” T4 regarded this as “very rare” in
Kakuma camp or even “impossible,” as Somali girls traditionally only engage
in limited forms of communication with boys. In one case, a friendship devel-
oped between Somali girl S26 and S. Sudanese (Dinka) boy S25, who went to a
boys-only school. Early in the program, the girl communicated mainly with her
Somali friend. Yet in a later interview, the boy said he was making friends with
both girls, citing his partner’s abilities: “I feel good because the girl is very social...
She really understands. I like the way [she] concentrates... It really helped me.” The
girl initially hesitated to reciprocate. When given a chance to choose a partner
from the class, she didn’t choose her partner “because he doesn’t understand that

he’s a boy.” Yet two weeks after the program ended, she wrote, “yes, I have a new

friend [S25] who was my computermate and become my best friend.”

Yet sites of bonding, particularly where prompted by breakdowns in under-
standing, were not just limited to deliberate pairings. We observed many in-
stances of brief, one-shot interactions across pairs or in unstructured moments.
For instance, a Burundian boy and a Ugandan girl demonstrated their code for
another pair —a Burundian girl and a Somali girl. This kind of helping often
entailed rotating the screen or laptop so that others could see, as in (Fig. 3.1b).
In other cases, students bonded during gaps in instruction; for example, while
teachers prepared, a Kenyan boy explained the concept of a ‘forever’ loop to a

Rwandan girl absent from the previous class.

Finally, many moments of friction occurred over group projects, where
students had to contribute and codify their ideas. Such moments included:

ideation and brainstorming; constructing scenes relating to culture inside
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Figure 3.2: Group game designs embody experiences shared across difference:
(a) a boy avoids mosquitoes to reach red malaria pills; (b) a woman flees across
a border as “terrorists” block her path; (c) a student vies to finish their education
by answering questions on exams and dodging distracting mobile phones.

Scratch (Fig. 3.1c); playful argumentation with hands during prototyping; and
cultural conflicts over design choices. For the last, a team of four (Burundian
(M), Somali (M), Dinka (2 F)) decided on “malaria” as their final game topic,
and had a disagreement whereby Dinka members argued that reaching an in-
digenous plant medicine should be the goal. Somali boy S22 disagreed, saying
that was “old fashioned, you should embrace the new one, you shouldn’t believe that
anymore,” and argued for red malaria pills as the goal. The team went with
S22’s design (Fig. 3.2a).* Final game topics included peer pressure to smoke
bhang (marijuana); the government blocking UNHCR’s attempts to expose cor-
ruption; cleaning up Uhuru park; avoiding “bad boys” on the street; planting
trees; the importance of listening; and the problem of open defecation. Many
themes reflect shared experiences — such as migration to Kenya or school ed-
ucation (Fig. 3.2) — and thus indicate design being used as an opportunity for
building common ground. Others, e.g. a game about child brides, reflect possi-

bly more personal or traumatic experiences of their group leaders.

*Although this reflects how cultural difference can surface from directed pedagogy, it also
represents a potential complication to intercultural efforts that we will explore in a following
section.
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3.2.2 Overcoming Obstacles to Intercultural Learning

As already intimated above, the intercultural objectives of NPP also faced nu-
merous practical obstacles. Some of these emerged from gaps in program struc-
ture and design that were filled in by caring initiatives taken by teachers and
students [229]. In these cases, built-in diversity could be used “as a resource” to

contribute to intercultural goals, provided they were consciously attended to.

As noted above, aspirations around computing served as a key motivation
for gathering and participation. Once students arrived and learned who was in
the room, however, there was no guarantee they would stay. One of the most
prevalent cases of friction occurred between Dinka and Nuer participants, com-
munities in active conflict.” A Nuer teacher encountered two Dinka students in
his class who stopped coming upon learning his tribe. In response and on his
own initiative he traveled to a Dinka section of Kakuma to encourage the boys
to remain in the program. “Even my people say, “‘Why are you going there? They’ll
kill you...” No, they won't kill me. I'll talk to them.” The boys returned after his visit
and finished the program, indicating to him that their negative perceptions had

shifted, albeit tentatively.

Even if students were in class and eager to listen, they often resisted inter-
cultural interaction. Across sites, students” natural tendencies were to sit with
others like them. This resulted in groupings by nationality, tribe, or school early
in classes. For instance, we saw Somali girls clustered into one corner; students
clumped by the same school uniforms; and the only three Congolese students

in one class huddled around one laptop. These tendencies to sit together (or

A 2018 report funded by the U.S. Institute of Peace estimated approximately 382,000 ca-
sualties in South Sudan between 2013-18, resulting in an influx of 2.5 million new refugees in
neighboring regions [84].
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apart) could crystallize through force of habit, limiting space to maneuver, and
the reinforcing materiality of devices. At some sites students labeled their lap-
top boxes with their names or grew attached to project files saved on laptops; at
classes with more computers, some students were seen working alone to take
advantage of additional resources. Devices could distract students (T4: “They
were eager to use computers... I tried to explain them ‘no, this [intercultural activity]
will assist you in your lives.””), which could suppress encounters especially dur-
ing gaps in instruction. At all sites where the internet was present, students
visited YouTube (in some cases, wearing headphones and shutting others out)
or played video games — media which could include violence. By contrast, in
sites without internet, students were seen collaborating and focused on pro-

gramming projects, especially before classes began.

Yet these situations presented opportunities for teachers to make intercul-
tural goals explicit. By breaking up order and ritual, the act of disruption itself
seemed to help students to reflect on their mindsets. S13 said, “You cannot stay
in the same place without interacting with each other. The teacher would tell us to com-
municate with each other, to get to know each other better.” Moreover, the reinforcing
materiality of devices also provided powerful opportunities to have the oppo-
site effect, to act as glue to sustain otherwise contentious (or nascent) pairings.
Indications were that the intercultural friendship mentioned earlier between S.
Sudanese boy S25 and Somali girl S26 only occurred because these students sat
together over a sustained period, tied materially by their labelled devices after
paired by the teacher. In other cases, students who were paired on previous
days could return to those locations by their own initiative, suggesting that the
“sticky” and affective properties of devices might be employed to sustain new

arrangements.
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Language differences could also hamper communication. Although NPP
did not enforce a language of instruction, lesson plans were written in English
and teachers chose to teach in English (even at sites where Swahili was com-
mon), switching into Swabhili only occasionally. T3 summarized their position
along three points: English is the “language of computers” (OS and Scratch soft-
ware were both in English), Swahili does not have well-known terms for many
computer peripherals or topics, and many students believed that if they learn
English, they will be more successful in life. This gatekeeping proved difficult
for Swahili speakers less versed in English, to the extent of causing dropout
in two captured cases. Yet these frictions and oversights could also be fuel
for interaction. Students used these challenges as opportunities to help others
through translation, with some noting they were making cross-cultural friends
through such transactions. For Sudanese students, English knowledge seemed
especially advantageous. While working together on the final game project, S.
Sudanese boy S10 and Congolese boy S11 both cited S10’s knowledge of English
as a source of bonding: “When English words become difficult for me, [S10] will come

and help,” said S11.

Still some opportunities for dialogue may be inhibited from perceptions of
appropriate cultural behavior. Teachers used this resistance as a chance to en-
courage these students. T5 recounted a Somali girl who returned to the centre

after the program ended to continue programming practice:

First of all, she’s very shy. She doesn’t understand, she doesn’t ask ques-
tions... I asked her, “Is that how you behave at home? Do you speak with
your father and brothers?” She says, “No, I'm used to talking to them.” I

said, “Here, we are united by this class regardless of our culture and reli-
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gion.” Then from there... I made her the group leader so that she’ll stand up
and read what they discussed. From there, she gained confidence... In her
religion, she says that a woman can't stand in front of people. I say, “No,
how come? I've seen Somali girls who speak and stand...” So, in the end,

she has changed.

It is important to note that the ability to turn challenges into resources for
intercultural goals hinged upon the built-in diversity of classes. At N2, logis-
tical challenges prevented NPP from selecting students, resulting in a student
composition mostly from the same tribe. The class resulted in a reversal of in-
tercultural goals: one boy of a darker skin tone and different nationality than
the majority appeared to be making new friends in N2, even while not making
friends at school, yet his post-survey responses suggest negative effects on his
attitudes towards cultural others. It turns out that he had experienced instances
of exclusion: His teacher overheard his teammates insisting on using their lan-
guage saying, “hey, when you speak your [tribal] language, do we understand?” The
teacher thought that the majority of students at N2 were not internalizing the
cultural activities: “It’s like, they’re not willing to go past their culture.” This case
highlights a potential crux, that class make-up must be diverse enough that no

single group stands out as the majority.

3.2.3 Complications of Intercultural Learning

The previous sections involve instances of intercultural learning, particularly
at sites of frictions, breakdowns, and gaps. However, whether instances of

intercultural engagement are truly positive is not always clear. We now turn
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to more complicated examples of intercultural outcomes, representing value
judgements on meaning making and behavior change. These examples illus-
trate how frictions and gaps, before framed as opportunities for learning, could
also shift into ambiguous or negative outcomes even when participants are fol-

lowing structure or bonding across difference.

First, while the need to communicate over shared devices had the potential
to bridge divides, it could also be a site for conflict and inequity (as others have
cautioned [324, 255, 357]). In one case, when his partner took complete control
of the computer, a boy left the pairing to work with a girl from his own tribe,
remaining with her for the remainder of class. At the same time, students were
aware of such dynamics. S21, a Ugandan girl, liked to work with the Burundian
boy she was partnered with saying that “[he] is ready to listen... everything is

equal,” but “when I observe other pairs, one person is taking control of the computer.”

More problematically, even if all learning outcomes are ostensibly being met,
with students designing self-expressive games and bonding with those from
other cultures — what students are bonding over could be controversial. For ex-
ample, intercultural bonding can occur over shared xenophobia. In one case, a
team designed a game whereby migrants reclaim lands by killing all male mem-
bers of another tribe. The team was composed of three boys — two Congolese
(from different tribes) and one S. Sudanese. One of the students, who came
from a tribe recently displaced due to violent conflict, explained that he wanted
to educate refugees on how “to emerge from struggle and suffering.” He said his
teammates could identify with the game’s story. We pressed him several times
as to whether there was another solution or design, but he finally explained, “If

you don't kill the thieves, they will come back. If you kill them, the story is finished
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because they are dead.”

Third, there were instances of intercultural learning which appeared to bring
pressures to assimilate to the dominant culture. Before, we showed how gaps
in the program provided space for dialogue; but they could also present op-
portunities and/or pressures for students to practice new behaviors typically
prohibited by their culture. One prominent instance involved Muslim (Somali
or N. Sudanese) participants. These students wore hijabs or chadors and came
from families that prohibited physical contact — including handshakes in greet-
ing — with males outside their family. Teachers told us that this practice ini-
tially created negative perceptions among participants from Great Lakes cul-
tures. At multiple sites, participants negotiated this practice during a warm-up
activity that involved designing a new handshake. Though not forced to shake
hands by the teachers, some Somali girls began shaking hands from beneath
their chadors; others eventually with their bare hands. These students were
seen shaking hands during unstructured moments days or weeks later, such as

after peer game demos or before class.

3.3 Findings from the U.S. Study

A follow-up U.S. study took place in a 6th grade classroom across 3 periods
taught by the same teacher, Mr. M. I participated in the classrooms as an ob-
server for five weeks, until the onset of the COVID-19 pandemic. Some of the
tindings were similar to the Kenyan study, such as how deliberate pairings crys-
tallized over multiple days. For example, I observed bonding over breakdown

and humor frequently, as well as students “teasing” each other through the cre-
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Figure 3.3: During a pair programming activity, a hispanic girl and a white boy
create a game about helping an old woman cross the street. The scene ends
with the old woman thanking the man and the man replying “vale Boomer”
(“OK Boomer” in Spanish). The pair were observed giggling together over the
project, but the U.S. teacher, an older male near the boomer generation, reacted
negatively to the epithet.

ation of media (e.g., in an activity of drawing one’s partner, a black girl drew her
white, female partner with big red lips as a joke). More unique findings, how-
ever, emerged from the differences between contexts, especially the preparatory
privilege (prior knowledge) held by some Euro-American male students. Here
I report on the U.S. study, focusing on some of the more unique findings for this

context.

3.3.1 Intergroup bonding over othering and stereotyping

Similar to the Kenyan study, sometimes intergroup bonding could occur around
instances of othering, including humor around stereotypes or epithets. For in-
stance, a white boy and a hispanic girl (who had recently immigrated from
South America) bonded over the creation of a game about helping an old, pale-
skinned woman cross the street; without any direct instruction to do so, stu-
dents chose in-game dialogue to be in Spanish. Using Google Translate to dis-

cuss and regularly passing the laptop between them, they were later observed
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giggling over humorous breakdowns and purposeful choices, such as the dark-
skinned male sprite picking up the old woman and carrying her across the
street. The researcher congratulated their efforts and attended to other pairs.
However, upon viewing their work, the teacher found the game included the
phrase “vale Boomer” (“OK Boomer” in Spanish) that he thought disparaged
older generations of which he was a part (Fig. 3.3). He scolded the pair for their
choice and encouraged them to remove the epithet. This appeared to demoti-
vate the pair the next day, with the boy hiding his face in his arms and adopting
an oppositional attitude. In this choice, the teacher’s resolution of friction may
have negated their social bonding by problematizing the outcome of their inter-

action.®

7

In informal interactions, people can “play” with group stereotypes as a
bonding mechanism; in this type of humor, the friction of stereotypes can “open
shared understandings of the underlying assumptions of dominant frames”
in order to “destabilize them through making those assumptions visible, and
laughable” [445]. As this example illustrates, the line between what is truly
othering and what brings people together is not always clear. Teachers must
balance whether to condemn prejudice or stereotypes expressed towards oth-
ers (e.g., older generations or ethnic groups) with the potential benefits of ac-
knowledging and supporting —rather than shutting down -bonding that oc-
curs around it. Such situations also express complications with projecting re-

searchers’ and teacher’s sense of ethics and political correctness onto students

[388].

6“OK Boomer” has been used by young adults and teenagers, particularly those marginal-
ized by U.S. society, to critique the attitudes of the (particularly white) baby boomer generation;
however, we acknowledge that this phrase also exists in a context of rising ageism worldwide
[277]. The teacher’s reaction to the essentializing phrase may be a combination of his socioeco-
nomic status and prior challenges to his authority in other interactions with the white student
in the pair.
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3.3.2 Intergroup bonding with unequal control

As scholars have shown for U.S. contexts [252], power dynamics can manifest in
unequal group negotiations where dominant cultural practices were centered.
Students privileged by the society could also come to class with prior knowl-
edge of computing [271]. I observed preparatory privilege strongly in U.S.
classes, although more along the lines of race than gender (some white or asian
girls in 6th grade classes seemed just as experienced and interested in coding,
which could reflect either the young age group or the shifting dynamics of early
2020). White boys would express prior knowledge of Scratch —in a few cases
even correcting the teacher during a lecture —that I perceived as impacting their
interactions with other students, such as dominating control of the computer

during pair programming activities.

Prior work suggests that preparatory privilege and in-grouping in nearly-all-
white classrooms, and the ostracization that can result, is a key reason why stu-
dents of color elect not to participate in CS courses [294]. This implies that white
students actively express prejudice or avoid interacting with students of color.
Yet I found that negative dynamics could re-emerge even when students were os-
tensibly getting along and bonding across difference. In other words, in some inter-
group pairings, bonding appeared to occur while partners of color are relatively
less engaged in activities and white students are centered through preparatory

privilege and/or assumptions of dominance [271].

A common case was a white student who controlled the computer for almost
the duration of a pair programming activity with a girl of color and where the
pair were otherwise seen laughing, bantering or smiling together. Here is one

example of these dynamics during a two-day Scratch activity:
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Kemi (black) and Jeff (white) are giggling over their screen while Jeff con-
trols the computer. I come by and ask, “What's the scenario?” Kemi looks
up and tells me, “We're fine.” Struggling to do something, Jeff rotates the
male sprite upside down. They both laugh. Jeff clicks something and Kemi
laughs harder: the man is now laying on his side in the street... Later in the
class, Jeff is slamming his finger into the Chromebook touchpad on the stop
sign (likely because the laptops are slow). “We need more time cause we’re
laughing,” Kemi tells me. The next day, Kemi has her knees on her chair,
her feet oriented towards Jeff with his blue hood up. They are again chatting

as Jeff controls their laptop.

As this incident suggests, a black student may signal that they believe com-
puting is not “for” them even while bonding with a white student around a
computing task. Their collaboration is still “around” the making of computa-
tional artifacts, but much less “through” the making of them. Following the
path-breaking work of Paula K. Hooper, I remind readers how racist messages
from the media, school and peers, as well as lack of representation and invis-
ibilized histories of Black American scientists [276], often signal to students
of color that computing is not for them [271, 26, 333, 203]. The student with
preparatory privilege may also make it easier to spur or encode humorous sce-
narios, since they are likely to experience less frustration while programming.
Importantly, we do not mean to imply the quality of bonding was especially
deep or something Kemi would have chosen to do absent the school context;

however, the dynamic could emerge.

Not all interactions where a white student bonds with a student of color are

negative, nor does helping require forcefully taking control of a computer. For
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instance, in one exceptional case a white boy, Mark, and a black girl, Yasmine,
appeared to be prior friends, sitting near one another, bantering, and teasing
each other. Like some white males in the course, Mark demonstrated high com-
petency with Scratch —but so did Yasmine, who often dominated control of the
computer when paired with other students, including white students. In one
exchange around movement for a sprite, Mark calls the researcher over (a com-

mon occurrence):

“Can you show her how to not glide [use move blocks instead of glide
blocks]?” As I approach, April, a white girl across from the pair, turns
her laptop around and tells Yasmine, “See you should do it like this.” “See
watch,” says Mark, clicking the arrow keys on April’s computer. Yasmine
says, “I want to do that help me.” She turns her laptop towards Mark. As
he makes changes, Mark teases Yasmine over not knowing the right block to

use.

Power dynamics emerge in this interaction, but Yasmine also signals her in-
terest —“I want to do that” —and her agency in commanding Mark to show her
how. Yasmine’s granting of permission to Mark is different than Mark taking
control of her computer unasked. In other interactions, Yasmine was paired

with April, and generally directed the interaction.

3.3.3 Teacher discomfort around breaking up order

One of the key design strategies of fostering intergroup bonding is to mix stu-

dents. But to break up social order, teachers must make deliberate choices and
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commands. These expressions of power often face resistance by students when
grouping across gender and ethnicity or breaking up friendships. They also
require potential trade-offs between intercultural and computational learning

goals that teachers must balance.

In the Kenyan study, teachers expressed few reservations at breaking up or-
der and countering student resistance. Teachers often cited their own learning
to interact across difference as their motivation. However, in the U.S., the white
male teacher expressed discomfort with deliberately pairing students of color
with white students or breaking up prior friendships. To distance himself from
the process, he passed out numbered popsicle sticks to randomize students and
pointed to places in the room, calling out numbers. This method had a chance

to pair those who were already friends.

I emphasize that prior intragroup friendships did not automatically mean
distraction, but a few friendships did appear to distract students. Reacting to
these dynamics, in a later class Mr. M paired students deliberately. Two black

girls resisted:

Mr. M is telling students where to sit when they come in, stopping them
and pointing to tables. “I need you to sit there,” he says. Tiana, a black girl,
spins around. “Why?"” “Sit there,” says Mr. M, pointing to the bottom-
left table. As more students shuffle in, Mr. M. directs Alyssa, a black
girl whom Tiana is prior friends with, to the back-right table... “Oh my
God,” Alyssa says, moving to the seat. Other students seem upset about
the assigned seats, and the class is noisy. Mr. M asks the class to settle
down. Alyssa raises her hand and Mr. M calls on her. “How come we have

assigned seats?” The teacher sighs. “Because I needed to have people away
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from their friends today.” Alyssa, who had stuck by Tiana for the last two

activities, sighs dramatically. Mr. M says something about being honest.

On a prior day, Tiana was observed positively collaborating with a white girl,
while when paired with Alyssa could be distracted by conversation. After this
split, Tiana engrossed herself in designing a Hero’s Journey maze for her dance
teacher, drawing a stick figure with long wavy hair surrounded by students;
later she asked me for feedback. Meanwhile, Mr M. attended to Alyssa and the

white girl beside her, who were later seen laughing together while leaving class.

This example surfaces the tension between breaking up intragroup friend-
ships for marginalized youth and intercultural goals. Yet the example also il-
lustrates a further point: teachers do not simply exercise power in groupings,
they often have to provide reasoning for why. This is especially important for
marginalized youth, who learn to be suspicious of authority figures and assert
agency through resistance [367, 320]. Mr M.’s reasoning for disrupting social
order (first ignoring Tiana’s “why?” and then, “I needed to have people away from
their friends”) expressed a desire to avoid conflict and obscure the reasoning,
which is different than reasons given by teachers in Kenya who were explicit

about their (and the program’s) intentions for intergroup bonding.”

I also observed prior intergroup friendships in classrooms, such as white
girls being prior friends with girls of color. The U.S. teacher responded to prior

intergroup friendships in various ways. In some cases, he let prior friends re-

’For instance, when asked how they countered resistance, a Nairobi teacher recalled: “We
told them the importance of team work and helping each other to learn... I remember we did it by force
sometimes, usually saying, “You have to stay with this person.” But like... [even when] forcing the person,
telling the person the importance of that.” Even when one teacher gave up splitting students, he
“started showing them why we are doing the warm-up activities” and claimed the students sat of their
own accord with unlike others later into the class.
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main together, viewing them as occasions to support, rather than disrupt. Typ-
ically, however, prior intergroup friends were broken up over randomization
techniques for pairing. In these cases, the method and scaffolding of grouping
students becomes important —-randomization can break up existing intergroup
friendships, but separating existing friendships during shorter activities, espe-

cially early on, may contribute to network bonding effects.

Comparing the Kenyan and U.S. findings, we arrive at two concerns when
grouping students: how much and for how long. On the one hand, regularly mix-
ing students seems to have positive effects: some students met and learned they
got along well together, while other pairs that did not work out (whether be-
cause of control inequities or just differences in personality) could feel secure in
the knowledge that it was temporary. On the other hand, mixing up groupings
too much could break up intergroup pairs who seemed to get along well, dis-
rupting the potential for deeper bonding. For instance, a white boy randomly
paired with a hispanic girl told to the teacher, unprompted: “I thought it was fun
—working with someone I couldn’t communicate [as well] with.” The pair would then
come into class and sit together, but gradually drifted away from each other

after split up by random pairings.

I speculate that a strategy of early mixing, followed by deliberate, longer-
term pairings by an attentive teacher (who observes what students seem to get
along, which hold certain social capital, which have social anxiety, etc.) may be
better at fostering positive intergroup interaction. To do this, however, teachers
must be willing to exercise commands in classes and utilize their social intu-
ition when grouping students. While these expressions of power may be un-

comfortable and error-prone, the Kenyan and U.S. studies show that countering
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students’ resistance to pairing could result in bonding that may otherwise not

have occurred, especially when sustained over multiple weeks.

3.3.4 “Interdependent” programming

Consistent with prior U.S.-based work [271], I observed tensions between stu-
dents” prior knowledge which fell along racialized and gendered disparities in
the society. In the U.S., this divide was particularly prevalent among white boys
and girls of color, where some white boys came to class with high levels of prior
knowledge and in pair activities dominated control of the computer. Above dif-
ferences in prior knowledge, this assumption of dominance and centrality is a
manifestation of whiteness [345]: at very young ages, children in the U.S. learn
to be biased towards whiteness, behaviors and beliefs entrenched by social seg-

regation and cultural representation [394].

After observing this type of dynamic in the first three weeks of the study,
I designed a new type of activity called “interdependent programming.” In
an interdependent programming activity, students are grouped and work in-
dependently (on their own laptops) but the activity requires active sharing of
information between collaborators. This is distinct from, though similar to, a
‘jigsaw” or ‘hybrid” method where each student in a diverse group is respon-
sible for separate pieces of a larger project [313, 441]. The teacher and I tried
two different activities, “Drawing One Another” (where pairs drew each other
to learn drawing in Scratch) and “My Partner’s Hero’s Journey” (where pairs
coded each other’s maze games around a personal hero). Both were modifica-

tions of MyCS [145] activities and the latter similar to a maze activity from the
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(a) Jordan’s game about Evan'’s hero, (b) Evan’s game about Jordan’s hero,
his teacher. her mother.

Figure 3.4: Two partners —a black girl, Jordan and a white boy, Evan —create
games of each other’s heroes and the obstacles they faced. The depicted games
are the final versions.

Kenyan program.

I focus on the multi-day “My Partner’s Hero’s Journey” activity to illustrate
more general observations of pairs across both activities. During this activity,
a black girl, Jordan, was randomly paired with Evan, a white boy. Jordan ap-
peared to be prior friends with other white and hispanic girls she sat with; in
prior activities, she was often patient and engaged and appeared to hold similar
knowledge of Scratch to many students in the course. Meanwhile, Evan, who
was usually quiet and attentive to helping other students, had corrected the
teacher on two occasions, indicating high prior knowledge of Scratch. These
students were observed collaborating closely on the first day of the activity,
where the teacher remarked positively on their work. On this day, Evan en-
coded Jordan’s hero, her mother and two challenges her mother faced —Jordan’s
birth at a young age, and attending college —while Jordan encoded Evan’s hero,
a teacher from the school who had experienced bad teachers (Fig. 3.4). After
four days’ break in between the continuation of the activity, the researcher in-

teracted several times with the pair:
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As I pass by, Jordan asks if I want to see her maze. She clicks the green
flag and moves her sprite, a woman, to the end of maze where she reaches
another woman —whom she says represents a ‘good teacher.” But the sprite
says nothing. She appears confused. Noticing this state of affairs, Evan
starts to explain something to her, then shifts the laptop towards him and

shows her how to fix the code.

In this interaction, despite focusing on his own screen, Evan noticed Jordan
was confused and sought to help her; he had been observed doing so on the
previous day when she was unsure how to color a backdrop. Note that in ear-
lier, standard pair programming with a different white boy, the other boy had
dominated control of the computer, even after multiple reminders to share con-
trol by the teacher and researcher, leaving Jordan with less time to practice on
Scratch. Now her partner shared expertise without removing the ability for her
to work independently. But the narrative of the game could be lost during the

interaction:

After she debugs the issue, Jordan calls me over to playtest her game again,
but I ask her what the story is about before we play. She looks around for
Evan’s worksheet; he sees this and hands me his sheet, but I ask her again
if she remembers. “I know it's been awhile.” Jordan says suddenly: “it’s
about his teacher’s story going through the sixth grade and her challenges

of [encountering] a bad teacher and becoming a good teacher.”

Here, having spent four days away from a single day’s activity, Jordan ap-
pears to have forgotten the content of her partner’s maze, despite appearing en-

gaged in finishing it. Under pressure, she remembers the story. Later, Evan
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expresses a similar forgetfulness:

I notice that Jordan and Evan aren’t interacting as much today —each is
focused on their own screens... After walking around, I return and ask Evan
to show me his maze. First I ask him what it’s about. He looks for Jordan’s
worksheet on the table top, finds it, and explains using her worksheet as a
guide: “Oh, [Jordan’s] mom had her at a young age, and then [her mom]

went to college which helped her.”

There are multiple potential reasons for why students might forget, such as
the delay or, possibly in copying Jordan’s drawing into the game, Evan over-
looked the personal narrative the game represented. Yet partner’s hesitation
might also be interpreted as nervousness around misrepresenting their partner’s
narrative (e.g., after the class, the teacher stated, “Look at how well they were work-
ing. 1 think they didn’t want to screw up each others work”). Indeed, even in the other
U.S. class which was typically noisy, students appeared noticeably quieter and
engaged during the latter days of the Hero’s maze activity. Yet the next inter-
action with Evan surfaces how preparatory privilege might cut off the potential

for deeper bonding or understanding;:

As I leave their pair, Evan smiles and tells me that he’s been working on
something “more complicated than this” outside of class that he’s proud of.
“It’s a platformer game.” I ask him what it’s about. He says it doesn’t have

a story like this game.

Shortly after and into the following day, Evan was seen working on that

personal game instead, while Jordan continued to expand her partner’s maze
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by adding a purple obstacle that disappears when the protagonist touches the
word “6th grade.” (This behavior mimicked a feature Evan had added, where
Jordan’s mother, after touching Jordan’s sprite and the word “college,” would
remove yellow obstacles.) Rather than seeking Jordan’s critique of his repre-
sentation or using it as an opportunity for further collaboration, Evan reverted
into individualized play and signaled a belief in what is “more complicated” as
having higher value (possibly to signal his competency to an authority figure
whose presence represented the white male majority in CS), rather than power-
ful narratives or social bonding. Though Evan helped his partner and, at least
on the surface, learned more about her background, he signaled that he valued
code complexity and demonstration of technical competence above all. Later
that day and into the next, Jordan was eager to demonstrate her learning to the
researcher and teacher; however, the exchange of experience was still limited

and reproduced power dynamics (albeit perhaps in less extreme ways).

Although this muted interaction around My Partner’s Hero’s Journey was
similar to other pairs, another reading suggests this activity’s design could be
improved to address the later behaviors we observed. In the activity, individ-
uals translated their hero narrative into a maze drawing before passing it to
their partner, concretizing a copyable blueprint. In an alternate design, their
partner could be made responsible for the translation process, requiring regular
dialogue between partners. Moreover, students could be asked to present their
game in an open playtest —holding them accountable to speaking respectfully
and accurately about their partner’s hero and framing the activity as a site to
practice understanding and empathy, in addition to computational knowledge
of “broadcast” blocks and event handling. Even so, still broader pedagogical

changes may be required for making the shift towards relationships in comput-
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ing classrooms.

3.4 Overall Thoughts on Fostering Bonding Across Difference

in Intro Computing Programs

The story of Jordan and Evan suggests that U.S. students, particularly in dom-
inant social positions, valued the demonstration of technical knowledge above
all, signaled by Evan’s comment about knowing “more complicated” coding
skills. Rhetoric about tech pipelines, Eurocentric and individualistic notions of
success (and detached abstraction) that devalue community and environmen-
tal connection [284], as well as media representations of white male “hackers,”
are important dynamics Evan may have been reflecting. The U.S. study tar-
geted intergroup bonding with changes to existing activities over Scratch, but
intergroup goals were rarely made explicit to participants through deliberate
scaffolding and targeted activities. By contrast, the Kenyan program made in-

tercultural learning an explicit goal of the class.

In retrospect, these design choices may be significant. In the Kenyan pro-
gram post-survey, all students were asked what they had learned in the course
before being asked more specific questions about intergroup bonding. 20 out
of the 40 students reported learning intercultural competence or communica-
tion skills alongside computing knowledge (e.g., “I learned how to create a game
and how to interact with other people from different origins”). Of the 38 students
that specified ethnic origins, 32 reported making at least one cross-national
friendship, 26 wrote at least one cross-gender friendship, and only 6 reported

solely intra-gender, intra-national friendships. There were indications that these
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friendships did not naturally arise by virtue of a diverse classroom. For in-
stance, when asked whether she learned anything from the course important to
her everyday life, a Rwandan girl replied: “Most of the work you do in a group.
You have to communicate. And you also have to understand each other. You're taught

4

to appreciate each other’s opinion.” The student further explained that most of
her new friends were made not from pair or group programming, but from the
warm-up activities “because you had to ask each other questions.” Similarly, when a
Kenyan boy was asked why he was making new friends including Congolese,
Rwandan, and S. Sudanese students, he stated: “Because [the teacher] was making

us interact with each other. Each and every day he made us into new groups.... Even

when he brought up physical games [like Mancala] we got to interact.”

Along with students, Kenyan teachers frequently cited the warm-up, ice-
breaker activities for contributing to intergroup bonds. For instance, when a
teacher was asked whether students would have bonded as well in other, more
traditional computing classes, he replied: “No, no, no. It’s not that much [in other
classes] because there’s no warm-ups. There’s no converging aspect [of friendships]
because everyone knows... that this is my computer.” In other words, screens dis-
tract students from interaction and solidify seating arrangements; class activi-
ties apart from the computer that encouraged interaction seemed to counteract
these effects. Other teachers reported observing students become more open
to interaction as classes went on and attributed this change both to time spent
in the class (about five weeks) and the non-computing icebreaker or warm-up

activities.

Beyond warm-ups, teachers in Kenya also employed various strategies to en-

courage students in intercultural learning goals, such as appealing to their own
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experience with cultural difference, their shared refugee status, being culturally
responsive to the shared local context (e.g., seeing someone get stung by a scor-
pion for an activity about empathy), or making explicit connections between
the conflict resolution activities and class dynamics. For example, one Kakuma
teacher deliberately grouped 3 students from the Nuer tribe in the middle of
the room, and added a Somali student who knew Swahili and English. Then
he asked the group to encode a conversation in Scratch, and told the surround-
ing classmates to watch. Predictably, the Nuer students spoke in Nuer and the
Somali student “started complaining.” When a boy tried to translate for her into
English, his Nuer partners shifted him back to their tribal language. The teacher
turned to the class. “So, how do you feel if you meet some people, theyre only talk-
ing in their languages but you cannot understand?” This occurred right before an
activity where groups of students would encode a conversation about cultural
difference between sprites in Scratch. The teacher’s pedagogy is reminiscent of

Werner et al.’s strategies for positive pair programming [424].

The relative importance of intercultural competence activities and rhetoric
during the Kenyan program, contrasted with the findings of the U.S. study,
strongly suggests that collaborative computing activities, by themselves, will
not produce equitable interactions or inclusive climates. Rather, positive inter-
actions in the Kenyan context appeared to result from the unique combination of
computing activities with intercultural competence activities and rhetoric. The
intercultural focus primed participants to take on the responsibility of bonding
across difference and creating inclusive climates. They then practiced this learn-
ing themselves during computing activities, especially in moments of break-

down, friction, and gaps in structure.
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3.5 Conclusion

Overall, I saw evidence that computing education provides unique opportuni-
ties to support intercultural learning. I also found that many moments of in-
tercultural learning were contingent on sites of friction, breakdowns, and gaps,
whether planned for or around, or as unanticipated conflicts among the pro-
gram, participants, and technology. Finally, I encountered a number of in-
stances that complicate any straightforward relationship between computing
and intercultural learning. Across studies, teacher capacity was the most im-
portant factor in the degree to which intercultural learning takes place. Teacher
capacity was often decisive in how well they attended to the program’s inter-
cultural goals, managed conflicts or obstacles, and led project-based computing
activities. This is consistent with prior literature in technology and education

[138, 403].

My findings align with a CHAT perspective on diversity [177, 94] in ex-
ploring how computing curricula and structure, coupled with the local reali-
ties of implementation “[provided] resistance and affordances to [its] attempts
to reach” its intercultural objectives [228, p. 66]. For instance, the computing
activity system provided certain affordances for intercultural learning and en-
counter, such as promoting shared laughter through breakdowns, and frictions
between pairs negotiating for use of devices. I also found that resistance to the
innovation’s intercultural goals could present critical opportunities for learn-
ing in their resolution. Following Engestrom, situations involving resistance
may be viewed as “contradictions” embodying “the clash between individual
actions and the total activity system” [132, p. 98]. In reference to Cole’s work

on the Fifth Dimension, Gutiérrez et al. emphasize how these “contradictions,
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experienced by us as conflicts” can be “a major source of change” [177, p. 217]
and how diversity may be used “as a resource” to address program goals, pro-
vided participants are primed to see it as a resource. Said more explicitly, a CHAT
perspective recognizes how the many frictions, breakdowns, and gaps present
in classes — experienced often as “conflicts” — may instead be mined as resources
for intercultural learning, rather than detriments to fully “solve” or overcome.
In addition to this straightforward way of looking at intercultural computing
programs, I found ambiguous situations which appeared to be affording and
resisting intercultural objectives simultaneously, but in different ways. For in-
stance, the actions of participants to bond cross-culturally over out-grouping
others, or to practice new behavior prohibited by their culture is, locally, cer-
tainly intercultural learning, yet viewed from a broader vantage point may con-
stitute negative outcomes involving reinforcing xenophobia, ageism, or cultural

assimilation.

Justice often requires coalitions of people to come together across differ-
ence to fight for a common cause. Some of the most important issues —climate
change, economic inequality, access to healthcare, and the refugee crisis, to
name a few —will require broad coalitions to advance solutions. But to build
coalitions strong enough to challenge power requires understanding and re-
spect even across disagreements. Rather than framing all friction as something
to be avoided, people must be able to interact even when interactions are ini-
tially uncomfortable and risk conflict. It is the resolution of that emergent, in-

tercultural friction which facilitates transformative change [137].

Computing education is still a relatively young field. Understandably, the

vast majority of research has focused on designs and strategies for improv-
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ing conceptual knowledge and attitudes of all people towards computing, es-
pecially for those traditionally under-represented in U.S. contexts. Scholars
have developed pedagogy to engage youth, whether by appealing to their in-
terest in social justice, valuing their insight and knowledge, or responding to
their cultural practices [365, 294, 127]. These shifts are powerful and important
work, and much more needs to be done, particularly with professional develop-
ment for teachers around culturally-responsive and justice-oriented pedagogy.
Where the intercultural approach differs is its chief concern about the quality of
social bonds across difference, and how to design computing spaces as positive
sites for fostering such bonds. I am still concerned about the quality of CS in-
struction and justice-oriented activities, but my objective is rather to view com-
puting spaces as a medium through which social and culture exchange, learn-
ing, and bonding occur between and among students that counteracts divisions
present in the wider society. As with Allport’s contact hypothesis [328], the
question is thus not whether to apply an intercultural approach, but rather in
what context, with what class composition, and with what structure building bonds

across difference becomes viable.

Although U.S. and Kenyan contexts are different in myriad, important ways,
perhaps the most salient difference across studies was the preparatory priv-
ilege of some white students, which resurfaced old tensions between inter-
group contact and unequal dynamics downstream from structural inequities.
Like other scholars, I again observed unequal interactions over group activi-
ties [271, 294, 366, 416], but I also observed scenarios where students appeared
to bond even over unequal dynamics. This reminds us that intercultural and
computational learning goals do not automatically align —e.g., there may be sce-

narios where bonding occurs at the expense of other learning goals —~which chal-
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lenges us to design solutions which mitigate power differences while continu-
ing to provide opportunities for intergroup contact. My trial of a new activity
type, interdependent programming, seemed to soften negative power dynamics
while still enabling contact, but deeper understanding and empathy across dif-
ference appeared muted, and while the activities could be better designed and
guided in future work, I suggest the explicit ‘intercultural” framing of comput-
ing classes (and their learning outcomes) appeared to be a significant factor in
some of the new friendships that students reported in the Kenyan program. This
suggests that future designs should explore framing intergroup interactions as
challenges for students to embrace and involve activities which teach them how
to attend to friction that emerges. Computing activities then become —and are not
automatically by virtue of diversity or justice topics —sites for students to prac-
tice attending to emergent friction and build solidarity across difference. Most
importantly, students can then utilize their own agency in advancing solidarity
across difference —not just during group activities, but in gaps in instruction and

outside the classroom context entirely.
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CHAPTER 4
DESTABILIZING PROGRAMMING IN CULTURE: “CULTURAL
ALGORITHMS” & INTER-CULTURAL DEVELOPMENT

My ethnographic fieldwork of programming classes inspired several lines
of inquiry. For one, I became dissatisfied with how little the material aspect
of programming —the hardware and the software environment —were conceptu-
alized as cultural and historical artifacts, carrying their own assumptions and
values. This question was all the more salient in Kakuma refugee camp, where
many East African students had never touched a computer before, let alone
programmed one. I eventually wrote a historical piece to deal with the cultural
heritage of programming, presented in Chapter 5. However, aside from the
material, other questions emerged around the physical activities that required

participants to act out code or procedures.

How does one draw a line between what constitutes learning “computa-
tional thinking” [430] and what constitutes learning intercultural competence?
Although I had only observed two activities where this blurring of distinctions
occurred, later activities like "To Market to Market!" —which I was unfortunately
never able to observe directly —gave two teams different sets of rules and proce-
dures and then asked them to interact, leading (quickly, and by design) to com-
munication breakdowns of the kind encountered in intercultural communica-
tion. In such activities, where did computational thinking end and intercultural
learning begin? Are there aspects of programming that might lend themselves
well to helping students become interculturally competent? And can this un-
derstanding of culture facilitate not just more “explicit” or obvious aspects of

difference —like language or dress —but tacit ones, like non-verbal behavior
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and social organization?

My inquiry around such questions led to the development of a phrase, “cul-
tural algorithms,” which seeks to unite algorithmic and cultural difference. I
later learned that “cultural algorithms” was a term used by Orlando Patterson,

drawing from the work of Hutchins. The language he uses evokes computation:

“Procedural knowledge is of two broad types: routines or scripts,
and distributed knowledge. Scripts are cultural algorithms: stored
knowledge of a “predetermined, stereotyped sequence of actions that
defines a well-known situation” (Schank & Abelson 1977, p. 41)...
Routines can be further subdivided into two broad types: individual
and divisional. Individual routines are those performed by a single
person such as learning the recipe for food preparation. Divisional
procedures, or drills, are those that require alignment with others
such as learning one’s role in an army parade, navigation team, or
orchestra. [One needs] only know what to do when certain opera-
tions occur in the environment and need have no knowledge of the

entire script. They simply ‘do X when Y.”” [321, p. 11; emph. added]

In this section, I propose and explore a new type of activity which mobilizes
the concept of “cultural algorithms” to teach about society. The goal of cultural
algorithms activities is to help participants externalize and write down these pro-
cedural scripts in the form of psuedo-code (or actual, runnable code), which can
then be reflected on and edited (“changing society”). Unlike ethnocomputing
—which connects computing to more “explicit” aspects of culture like language,
craftwork or fashion —cultural algorithms activities also include more “tacit” as-

pects of culture, aspects that have become so normalized, their destabilization
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as social constructions can come as a shock to participants embedded in that

culture.!

I present one example of a “cultural algorithms” activity, Birdcraft, that tar-
gets a tacit ontology central to U.S. society —the seeming naturalness of “race,”
accomplished through what the Fields call “racecraft” [142]. I first outline the
“racecraft” perspective on race, comparing and contrasting it with other work
on race/ism and HCI. This theory section may itself be a contribution, for, as
we shall see, it differs slightly from other prominent perspectives. With a col-
league Ariam Mogos, I then outline a preliminary study of activities on cultural
algorithms, particularly “Birdcraft” (a play on the term racecraft). 1 draw pre-
liminary findings from a small middle school class over Zoom, and with C.S.
education specialists as part of a summer workshop. Connecting with sociolo-
gists such as Abena Asare who teach race as a social construction [25], I argue
in favor of a constructivist pedagogy which guides participants to come to their
own understanding of the social construction of race, rather than a top-down
approach of telling, which can provoke denial, defensiveness, or hostility, espe-
cially when the person lecturing is implicated in the very social categories they
are attempting to reveal as a fabrication. Overall, however, I argue that cultural
algorithms activities require some additional setup and follow-up activities to

connect them back to the real-world.

!Unlike the work of Chun in Programmed Visions [85] ~who might frown upon the notion
of ‘algorithm as metaphor’ —cultural algorithms instead embraces that very notion, asking us
the question: to what extent was ‘algorithm” merely a “‘metaphor’ to begin with? When one
considers discriminatory practices like blood quantum laws on descent for Indigenous peoples,
is the algorithm there really just a ‘metaphor’? To maintain this distinction between algorithm
and metaphor -or really, algorithm and culture -we are assuming an underlying distinction
between the artificial and the “natural” aspects of culture; we are imagining ‘algorithm’ as a
concept detached from history, emerging from nowhere. I think such fears are misplaced, and
we might do better by embracing —if tenuously —the concept of algorithm, and repositioning it
towards positive ends [2].
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4.1 Racecraft and HCI

“If race lives on today, it does not live on because we have inherited
it from our forebears of the seventeenth century or the eighteenth or
nineteenth, but because we continue to create it today.”

—Barbara J. Fields [142, p. 146]

In this section, I attempt to establish an intercultural perspective on race/ism
in HCI by advancing Barbara J. Fields and Karen E. Fields” concept of race-
craft into our lexicon. I present “racecraft” both to put a name to some of the
troubling tendencies pointed out by other scholars in HCI [189, 53, 230, 58],
and as an orienting tool for HCI scholars looking to guard against the trap
of reifying race while fighting racism. In defining racecraft, I introduce sev-
eral terms and phenomena, such as the race-racism evasion, the performativity
of social constructionism, and Toni Morrison’s metaphor of the racial house.
In doing so, I build upon, and in some ways complicate, dominant U.S. dis-
courses in anti-racism to broaden the conversation on ‘race frameworks” in HCI
[251]. Throughout, I connect the Fields” work with scholars who adopt a sim-
ilar perspective that, following Fraser [146, p. 91], I term deconstructionist anti-
racism (elsewhere anti-race, humanist, ‘post-race,” or eliminativist anti-racism

[152, 350, 135, 273, 18, 268, 335, 106, 378, 206, 298]).

While agreeing with central tenets of CRT emerging from U.S. legal stud-
ies, such as racism’s ordinariness [305], racecraft diverges most strongly around
concepts of groupness and identity, arguing that the latter term itself serves to
naturalize transitions from an (imposed) identification into a (personal) identity
[68]. I analogize the debate between CRT and racecraft to the debate between

intersectionality and assemblage theory in woman-of-color feminism [293, 343].
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Since much prior work focuses on the “artifacts have politics” aspect of racecraft,
I also seek to remind readers on how politics have artifacts, or how racecraft can
act as a cultural worldview and framing device. I provide several examples of

the ways racecraft has appeared in HCI work.

4.1.1 What is racecraft?

Racecraft is the Fields” word for how racism reproduces itself through a seem-
ingly inescapable cultural rationality akin to witchcraft.> For the Fields, “[r]ace
is the principal unit and core concept of racism” and racism creates race, not the
other way around [142]. Historical materialist scholars like the Fields define
racism not as prejudice or prejudice-plus-power, but as an action and a rationale
for that action. This rationale is “the theory and the practice of applying a so-
cial, civic, or legal double standard based on [purported] ancestry, and to the
ideology surrounding such a double standard” [142, p. 17]. Race is “an ideology
that constructs populations as groups and sorts them into hierarchies of capac-
ity, civic worth, and [deserving] based on ‘natural” or essential characteristics

attributed to them [and which] help to stabilize a social order by legitimizing

’Fields & Fields are sisters: Dr. Karen E. Fields studies post/colonial Africa and the 20th
century American South. Dr. Barbara J. Fields is a Professor of History at Columbia University.
Throughout, I use “the Fields” to refer to both authors. By centering racecraft, I intend to explore
their argument in detail, not that I am the first cite them. Benjamin wrote a 2014 review [48] and
since starting this work, other HCI scholars cite the Fields in passing [439, 300, 272]. Other
sociologists and cultural theorists also compare “race” to witchcraft [312, 152, 18]. Another
popular theory is Omi & Winant's ‘racial formation theory’, often cited among HCI scholars as
itis often a core textbook in race and ethnicity courses [189, 86, 53]. The Fields neglect to cite Omi
& Winant, which careful reading of their work and interviews reveals is not an oversight. Unlike
the Fields, Omi & Winant are reluctant to liken race to witchcraft, state race is not a “problem”
in-of itself; that race is “central to everyone’s identity”; and that any attempt to contest race is
misguided [309, p. 112]. Others have critiqued formation theory; e.g., Magubane accused Omi &
Winant of “American exceptionalism,” contributing to naturalizing and globalizing U.S. racial
ontology [267, p. 377-82]; and in Internet studies, Daniels called formation theory ‘theoretically
weak’” and warned that it tends to detach race from racism [107, p. 712].
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its hierarchies of wealth, power, and privilege” [349]. Without downplaying the
“deadly serious problem” of racism, from the racecraft view, “the fundamen-
tal problem with racism is that almost everyone —not only “the racists’ —acts as if
there are people of one or another race in the first place” [207]. The Fields define

racecraft not as “refer[ring] to groups or to ideas about groups’ traits” but:

“instead to mental terrain and to pervasive belief... [R]acecraft orig-
inates not in nature but in human action and imagination... The ac-
tion and imagining are collective yet individual, day-to-day yet his-
torical, and consequential even though nested in mundane routine.
Do not look for racecraft, therefore, only where it might be said to
‘belong.” Finally, racecraft is not a euphemistic substitute for racism.
It is a kind of fingerprint evidence that racism has been on the scene.”

[142, p. 18]

One of the hallmarks of racecraft is the race-racism evasion, where racism
“transforms the act of a subject into an attribute of the object.” Race-as-adjective
“radiates a semantic and grammatical ambiguity that helps to restore an appear-
ance of symmetry,” often serving to obscure the perpetrators of racism [141, p.
48]. Race is thus “a neutral-sounding word with racism hidden inside” [142, p.
102-3], and “it is the repetition of the act of racism that makes race look like a

real entity” [100].

From the racecraft view, algorithms aren’t biased against particular “races”
—instead, the bias actually (re)carves the boundaries of races. In a 2014 review,
Benjamin rephrased the racecraft perspective as: a black man is not discrimi-

nated against because he is black, he is black because he is discriminated against
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[48]. Ignatiev & Garvey said similarly: “people were not favored socially be-
cause they were white; rather they were defined as ‘white’ because they were
tavored” [212, p. 1-2]. Thus, from the racecraft perspective, an algorithm does
not output a favorable outcome because a person ‘is” white; rather, a person is
(maintained as) white because the algorithm outputs a favorable outcome. The
Fields share Browne’s commitment to deconstructing race-thinking by analyz-
ing technology that “reify boundaries along racial lines, thereby reifying race”

[67, p. 8].

Racecraft thus provides a useful term between race and racism that calls
attention to how (a culturally-specific) racism “assembles” or conjures races
[156, 298], forming an “invisible ontology” that transforms “relations between
persons [to] relations between races,” leading to seemingly innocuous phrases
like “race relations” and “inter-racial” [142, p. 214-5]. The term ‘racecraft’ draws
a comparison to witchcraft not to deny the rationality of either, but to “assume
it”: “[Both] are imagined, acted upon, and re-imagined... the action and imagining
inextricably intertwined. The outcome is a belief that ‘presents itself to the mind and
imagination as a vivid truth’... Witchcraft has no moving parts of its own, and needs
none. It acquires perfectly adequate moving parts when a person acts upon the reality
of the imagined thing.” The Fields provide examples of how U.S. onlookers per-
ceive several situations, such as conflicts among college roommates, as “racial,”
rather than everyday differences of personality or opinion. While an outsider
to the U.S. might attribute these conflicts “to ordinary cause and effect... the

American is the insider on the alert for witchcraft” [142, p. 19-22,30,40].

This conjuring trick recalls Joerges’ rebuttal to Winner’s piece “Do Artifacts

Have Politics?”, the latter often cited by race and HCI scholars [188, 49, 374,
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305, 102]. Joerges asked “Do Politics Have Artifacts?” to highlight that how
artifacts are ‘read’ can produce evidence to justify one manner of reading —
certain intent is assumed and then reproduced, ahistorically and drained of ad-
ditional context, as the conclusion about the artifact [220]. In such stories, we are
“forewarned that things are other than they seem,” motives are “revealed,” and
then we are told “the outcome” [435, p. 34]. The Fields describe a commotion
over a journal cover depicting a (Southern) Black woman, meant to refute the
Aunt Jemima stereotype. Readers (in the Northeast) rushed to declare the cover
“racist,” though the Fields questioned this: “the portrait [cannot] make dark
skin, in and of itself, hard to look upon. The viewer must bring that reaction to
the picture or, for that matter, to a real person” [142, p. 72]. So too is racial dis-
parity discourse often “laced with generic, a priori assumptions about the role
of [race]” where disparities are framed as solely “racial” when they are “in fact
embedded in multiple social relations” [351, p. 151]. Such racecraft scholarship
“first strews race and races everywhere and then, mirabile dictu, discovers them

everywhere” [141, p. 51].3

The difficulty is that many technologies and artifacts do embed racism and
are produced from racist structures [301, 49, 67, 69]. Going too far on ambiva-
lence leans towards feeding “uncertainty” [401, p. 15], what Piper calls “impo-
tent musings on the subjective incompatibility of different worldviews” [334, p.
395]. Still others may argue that overly foregrounding the social construction

of race may be anathema to the political choice of a necessary strategic essential-

3For example, in Cave & Dihal, they show how the imagery of Al systems are often snow-
white or androids with pale skin. To account for this, they ‘forewarn” the American reader that
“even narratives of an Al uprising that are clearly modelled on stories of slave rebellions depict
the rebelling Als as White” [78, p. 697]. Because the American reader automatically associates
‘slave” with dark skin, ‘things are other than they seem.” In fact, the origin of the android up-
rising is from the 1920s Czech play R.U.R. by Capek. The Czech term ‘robota’ referred to the
forced labor of ‘white” serfs in Eastern Europe.
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ism [380] that reifies and essentializes social categories to fight against the social
hierarchies that (re)inscribe them [103]. Yet in considering the Fields” perspec-
tive, I want to focus on how racecraft acts as a culturally-specific ontology —a
particular ‘racial” worldview —not because other foci are less important, but be-
cause this aspect seems to have received less attention, and becomes especially
important as U.S. racecraft and anti-racism ‘travels’” through media technology.
My inversions of the phrase ‘artifacts have politics’ to “politics have artifacts’
shall be rather broad. To combat the spread of this polarizing ‘racial” world-
view, the Fields argue to shift towards language of ethnic groups and ancestry,
stressing that “the equation of Afro-Americans’ peoplehood with race is a corol-
lary of racism” [141, p. 50]. Aligning with this position, in 1997 Patterson con-
cluded that ‘race” in the common ‘race/ethnicity” distinction is “a distinctively
American belief, an essential part of American racist ideology... [it maintains]
the binary concept of ‘race’ that prevails in America... This is its only linguis-
tic function” [320, p. 76]. ‘Race,” and its counterpart racial identity, in the U.S.
acts as a cultural code to submerge and hide one-drop rules, naturalizing anti-
Blackness and anti-Indigeneity by confusing insiders to equate ‘race” with phe-
notype and groupness. In short order, I will provide concrete implications for
HCT, first, however, we must grapple with how this differs from other work in

HCI and beyond.

4.1.2 Why do we need another race framework?

In 2020, Ogbonnaya-Ogburu et al. published “Critical Race Theory for HCI”
at the annual CHI conference, contributing to the discourse on race and racism

and/in HCI [305]. Around that time, many other scholars have contributed to
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the discourse in HCI, including Ruha Benjamin and Yolanda Rankin [49, 344].
These papers and discourses draw largely on traditions in Critical Race Theory
(CRT), a line of inquiry founded by U.S.-based critical legal scholars Derrick Bell
and Kimberlé Crenshaw, for understanding race/ism and intersecting discrim-

inatory systems.*

Although CRT has been widely influential, it bears mentioning that many
prominent scholars who study race/ism —such as the Fields, but also Paul
Gilroy, Orlando Patterson, and Adolph Reed ]Jr., among others —do not call
themselves critical race theorists and at times actively distance themselves from
the discourse (e.g., [108, 95, 141, 153, 349, 320]). Black feminists such as Emma
Dabiri and Jennifer C. Nash also distance themselves from earlier conceptual-
izations of race and anti-racism in Black feminism, finding more commonality
with the identity-deconstructionist work of Jasbir Puar on assemblage theory
[106, 343, 293, 292]. Despite this complexity and debate, I have noticed HCI
scholars —-new to scholarship on race/ism, and reading CRT work for the first
time —understandably assume such scholarship is coherent and homogeneous,
thereby ignoring divergent perspectives in the philosophy of race, historical ma-
terialism, postcolonial theory, cultural studies, or feminism [159, 342]. In a 2020
conversation, prominent race theorists Paul Gilroy and David Theo Goldberg
also expressed concern, remarking that the discourse around race suffers from a
kind of “presentism” where past debates are ignored and racial ontology is de-
historicized [157]. Although the differences between CRT and other approaches

vary, one common claim made by detractors to CRT is that some work done

“In this chapter, I delimit CRT largely to its emergence from critical legal studies [95, 108, 251]
and the key tenets presented by Ogbonnaya-Ogburu et al. [305]. Many scholars herein do not
identify themselves as CRTs and sometimes deploy strong critiques; see [108, 95, 141, 153, 349,
320]. Other scholars may not delimit “critical race” studies in this way; however, the term risks
both conceptual inflation and creating a false sense of agreement and equivalency.
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under its banner suffers from circular reasoning. This concern is related to the
concept of racecraft just defined. To illustrate how, it is instructive to recall some

debates around defining racism.

Two major types of definitions of racism are prejudice and prejudice-plus-
power [205]. A ‘prejudice” definition of racism focuses on intergroup conflict
between people of different races.” A prejudice-plus-power definition empha-
sizes that power dynamics are uneven and coded into institutions and culture.
Here, racism may be positioned as the defense of racial privilege of the domi-
nant white group, and people of color cannot be racist [205, 119]. Finally, I reflect
on definitions provided by Kendi, since his work has received widespread atten-
tion, teaches a specific way to be anti-racist, and for some in American popular
culture, has become synonymous with critical race theory [233]. Kendi defines
racism as “a marriage of racist policies and racist ideas that produces and nor-
malizes racial inequities.” For Kendi, “a racist idea is any idea that suggests
one racial group is inferior or superior to another racial group in any way” and
anti-racist ideas are those which declare “racial groups are equals in all their ap-
parent differences” [233]. A similar definition of racism in terms of racial groups

appears in Ogbonnaya-Ogburu et al. [305].

These definitions of racism are extremely valuable, but they have a “limit,”
according to Tuck & Gorlewski and Patel & Price: they fail to embed how racism
produces race [405, 319]. Said Mason in a PhD dissertation at Howard Univer-
sity: “Kendi’s inability and articulated unwillingness to consider that race is
racism is indicative of the overarching problem related to such discourse” [273,

p- 7]. To put the problem explicitly to the reader: racial groups can never be

°E.g., Google Search in 2020 defined racism as: “Prejudice, discrimination, or antagonism
directed against a person or people on the basis of their membership of a particular racial or
ethnic group, typically one that is a minority or marginalized.”
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equal, because asymmetric cultural rules define them [377]. Definitions that de-
scribe racism in terms of discrimination against “racial groups” put the cart be-
fore the horse: they embed an assumption that race pre-exists racism, even while
authors may declare that race is socially constructed. In their circularity, definitions

that use race to define racism exhibit racecraft.

4.1.3 The performativity of “race is socially constructed”

“’Race relations’... as an analysis of society takes for granted that
race is a valid empirical datum and thereby shifts attention from the
actions that constitute racism... to the traits that constitute race... For
scholars in our own time who accept race, once ritually purified by
the incantation ‘socially constructed’... the relevant traits are more

likely to be ‘difference,” ‘Other-ness,” ‘culture,” or ‘identity.

—Barbara J. Fields [142, p. 151]

How could it be that race scholars who otherwise declare that “race is
socially constructed” fall into the trap of racecraft? Reciting the social con-
struction thesis does nothing to cleanse authors from racecraft precisely be-
cause racecraft is like witchcraft: an invisible ontology rather than simply a
set of facts [142, p. 220]. Many sociologists have criticized how the declara-
tion “race is socially constructed” can become performative, whether devoid
of practical meaning or seemingly not understood by those who declare it
[135, 152, 160, 268, 350, 348, 320, 377, 251, 20, 427, 206, 105, 434, 335, 267]. Gilroy
calls performative overtures to social construction “the pious ritual in which
we always agree that ‘race’ is invented but are then required to defer to its em-

beddedness in the world and to accept that the demand for justice nevertheless
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requires us to enter the political arenas that it helps to mark out” [152, p. 52].
According to Spencer, the obligatory reference to social construction before race-
talk may even become a defense for racecraft, an absolution ritual followed by a

hidden ‘carry on as you were’ [377, p. 250].

The performativity of “race is socially constructed,” what Gilroy calls the
move to “rescue race from racism” [154, p. 18], appears in major works in
HCI. In her essay Race and/as Technology, Chun “frame[d] the discussion around
ethics rather than around ontology, on modes of recognition and relation, rather
than on being.” After pointing out that race is socially constructed, she states
that racism “stems from race” and that race “organizes social relationships” -
phrases that are signatures of racecraft [86, p. 9-14].° Goldberg reminds us:
“Racisms establish, set in place, and extend races, not the reverse” [161, p. 171].
For the Fields, race stems from racism; it is not an independent causal force that
“organizes” reality, nor can it be sanitized or liberated [141]. In Chun’s closing
argument, she claims that “the best way to fight racism might not be to deny
the existence of race but to make race do different things.” This repeats earlier
work by Haslanger (“we might instead ask ‘race’ to do different things” [194, p.
52]), who also ‘moves on’ from racecraft views like Appiah’s [19]. Where race
as technology “operate[s] on understandings of how it works that are already
in place” [100], racecraft refers to those understandings themselves (mental ter-
rain/belief) and the everyday practices (acting on that terrain) that give race co-

herence. Racecraft is what Coleman’s “hammer” of race hits [96, p. 178-9]. Like

®Chun calls the Fields’ position “race as culture,” citing a book by Reardon to ‘debunk’ it. In
the cited pages, Reardon claims that race isn’t “treated as a historical object” by the “critical race
theorists,” referring to work by Barbara Fields [347, p. 18]. This claim is factually incorrect: Fields
is a historian, and Fields has never called herself a critical race theorist. To be clear, “ideology”
for Fields means race is performed, cultural, and rational, not that it is merely a “discourse”
or language as Chun suggests from Reardon’s misreading [142, p. 137-9]. See Patterson on
‘culture’ [321].
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eliminativists, the Fields wish to target racecraft in addition to racism, rather
than only subverting the existing terrain, important endeavors that nonetheless
may leave the underlying infrastructure intact [197]. Said differently, the Fields
align with Collins” matrix of domination [97], but seek to remind us that, strictly
speaking, “race and class do not intersect but racism and capitalism do” [273, p.

242].

This view —on deconstructing race while fighting racism —I shall call decon-
structionist anti-racism. Where deconstructionist anti-racists differ from others
is their social and personal refusal, or attempts to deconstruct, racial categories
and notions of identity around them. They remark that challenging race’s social
construction, or transcending what Mabhiri calls the “color-bind” [268], can sum-
mon perceptions of color-evasion’ or non-racialism, policies and rhetoric which
has managed to uphold racism, rather than dismantle it [161, 135, 377]. They
may also be accused of hopelessly utopian thinking, lambasted as humanists,
or exhibiting privilege [338, 119, 153, 422, 6, 287]. Thus, deconstructionist anti-
racism is “liable to make one an intellectual punching bag of critics from left to

right” [251, p. 153].

The debate between identitarian and deconstructionist anti-racisms has a

long history.® While anti-racism “is usually thought of as undoing or revers-

’Color-evasion [16] is the claim that one “doesn’t notice race”; or if we just stop talking about
race, racism will go away.

8For those wishing for more precise definitions, I provide them here. Goldberg defined sev-
eral kinds of anti-racism: anti-racialism that “seeks to end racial reference” without attending
to racism; racial anti-racisms where one fights within racial identities and which sometimes re-
quires reifying race; and nonracial anti-racisms that seek to fight racism without racial identity,
but “have tended to stress individual rights over group rights... [and] to elevate concerns about
racial definition.” Goldberg believes that “there is no inherent necessity to the devolution from
racial to racist reference,” yet later he is more positive about non-racial anti-racism, calling it an
important “dream” that critically reorients anti-racism and combats those who express “dog-
matic religious profession [that] insist that their [racial] commitments are the best or only wor-
thy way of being in the world” [161, 162-72]. Here, I define identitarian anti-racism as racial
anti-racism that, though it expresses conservatism, in practice risks slipping into essentialism
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ing the political economy of racial sovereignty and superiority... less often there
is a call to derail the social ontology and architecture of racial classification... the
building blocks of racisms’ constitution” [161, p. 166]. Gilroy has long argued
for a deconstructionist, humanist anti-racism [156, 154, 153]. Gilroy contrasts his
type of anti-racism to the pessimism of many critical race theorists, most notably
Derrick Bell, who called racism “permanent” and “indestructible” [395].° One of
Bell’s colleagues, Kimberlé Crenshaw, argued that embracing racial identity was
“the most critical resistance strategy for disempowered groups,” chastising hu-
manistic or deconstructionist strategies as “vulgar” and dismissive. She argued
that “I am Black” is a positive identity, while “I am a person who happens to be
Black” is “straining for a certain universality... a concomitant dismissal of the
imposed category... as contingent, circumstantial, nondeterminant.” She tem-
pered the strategy as dependent on time and context [103, p. 1297]. Throughout
Racecraft, the Fields view the concept of racial identity as an obstacle to fight-
ing racism, rather than a cure. In an interview with Jacobin Magazine, they
reveal that they prefer Crenshaw’s second phrase and allude to other scholars
as “primordialists”: “They believe that they are what racecraft made them. Race

is an identification... It’s not an identity” [100].

By now, it should be clear that critical race theorists and deconstructionist
anti-racists differ on some key points around groupness, identity, and anti-racist

action. These debates are analogous to debates in postcolonial and feminist

[152, 135, 322, 298]. Deconstructionist anti-racism is anti-race anti-racism, a ‘nonracial” anti-
racism with a commitment to both fighting racism and deconstructing race simultaneously, in-
cluding racial identities, that nevertheless risks focusing too little on racism [106, 135, 273]. Most
advocates argue ‘white” identity must be deconstructed first [211, 106, 422, 377].

To be less subtle: in a passage, Gilroy alludes to CRT as a “U.S.-centric” framework that
overcorrects for color-evasive liberalism: “This orientation answers the liberal culture of denial
by saying that ‘race’ is not nothing but everything: a permanent and apparently inescapable
feature of society.” It is fatalistic and resigned, its proselytizers “extremely attached” to reifying
race, appearing “more concerned with arguing that any aspiration to live outside of racialized
bonds, codes, and structures of feeling is naive, misplaced, foolish, or devious” [153, p. 145].
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studies on the political value of strategic essentialism over deconstructionist ap-
proaches to fighting oppression [380, 293]. Before I close this section, however, I
want to reflect on the fact that Toni Morrison advanced a similar anti-racist per-
spective to racecraft and faced likeminded criticisms. Her concept of the “racial
house” will prove useful to framing future discussion and help me reveal why
the racecraft perspective may also be considered an “intercultural” approach to

racial literacy.

Throughout her career, Morrison was interested in deconstructing race, writ-
ing works such as Recitatif, Paradise, and A Mercy that purposely eschewed racial
categories. This “non-colorist literature” was not “literary whitewashing,” she
chided critics, but a move “to defang cheap racism, annihilate and discredit the
routine, easy, available color fetish, which is reminiscent of slavery itself” [288].
In her 1997 essay Home, Morrison introduced the metaphor of a “racial house” to
describe the paradox of combating racism from within racecraft. In her writing,
she tried to make the house more hospitable, but then asks: “Could I redeco-
rate, redesign, even reconceive the racial house without forfeiting a home of my
own?” [287]. At the end of Beloved, she had written a word that signed a stereo-
type, yet many Afro-Americans would also use it: the word had the wrong
politics, but in changing it, she genuflected to a particular ‘politics” of the word
—the White gaze’s. Race became a self-filling prophecy [281]. She challenged

others:

“We need to think about what it means and what it takes to live
in a redesigned racial house and evasively and erroneously—call it
diversity or multiculturalism as a way of calling it home. We need to

think about how invested some of the best theoretical work may be
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in clinging to the house’s redesign as simulacrum.” [287]

Morrison’s remarks reflect the Fields” suggestion that the visual salience of
U.S. racism presents such a “vivid truth” that even anti-racists and race schol-
ars can slip into the twilight of racecraft. In Blinded by Sight, Obasogie argues
that people who are blind are better at understanding racecraft, because they
notice how race becomes rather than simply is visible [303, p. 180]. When peo-
ple visit who are far outside U.S. culture, they also notice this becoming [397].
For this reason, I have come to believe that operating from a “racecraft” per-
spective requires an intercultural understanding of race/ism in the U.S. Those
who are born and grew up in the U.S., embedded in the society, are unlikely
to attain this level of intercultural competence from experience in that society
alone. History bears this out, showing many examples of famous Black Ameri-
cans who broadened views on race after journeys abroad, including Malcolm X
and James Baldwin [268, 39, 437]. Many scholars who speak of deconstruction
also draw from intercultural experiences [152, 427, 206, 335]: Piper stated that
visiting Germany “taught me what it meant to be an American” [337] and the
Fields themselves claimed that to understand racecraft, “the necessary first step
was that we had to have some kind of intellectual detachment from American

society” [100].

If understanding racecraft requires one to draw upon intercultural experi-
ences to “get outside” the racial house, it is understandably the case that acting
on such a view from within the society it derives can incur suspicion or outright
hostility [179, p. 59]. Asare, a sociologist who teaches race, echoes this point,
suggesting that the denaturalizing of race “carries with it psychic risk” for Black

students, that there are “costs” to attempts to live outside it, and likened its re-
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jection to an “exorcism” that would “[cast] out racial essentialism” [25, p. 22-3].
Intercultural theorists have repeatedly noted that when pointing attention to the
means with which people make sense of their world —from which they derive
community and meaning —people are liable to react with defense, hostility, or
confusion [52, 183, 334]. Adrian Piper’s concept of literal self-preservation argues
that we are predisposed to preserve our (racial) rationality by shuffling away
threatening anomalous data: “compelled either to conceptualize the objects of
our experience in familiar terms, or else not to register them at all... this is a
necessary condition of preserving the unity and internal coherence of the self”
[334, p. 447]. Only when normalized rules are broken may we realize they ex-
ist [183, p. 93]. And so, when presenting views similar to racecraft, scholars
have worried and seen that it may be particularly charged for Black Ameri-
cans [25, 155, 206, 379, 160, 273, 320]. Upon reading Racecraft, Ta Nehisi-Coates
stated that it was “a challenge to African-Americans who have accepted the fact
of race and define themselves by the concept of race”;'° Gilroy was confronted
by Black American parents who demanded that he be “stopped from teaching
[their] children” [158]; Hoyt begins a presentation with a slew of disclaimers
[207]; and Spencer claims that he has been ignored by many of his contempo-
raries [379]. Even recently, a talk by Adolph Reed Jr. was contested by a young
AfroSocialist group [339]; as reasoning, the group stated that “race isn’t bad in

and of itself. Racism is bad and needs to be destroyed” [4].

19Some passages from Coates’ Between the World and Me are eerily similar to Racecraft, which
he was reading at the time of writing. While enjoying his writing, the Fields later perceived that
Coates failed to internalize their premise [100].
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4.1.4 Pastwork in HCI, critiqued through the lens of racecraft

“I messed around with children, words, water, Coke, peanuts, bot-
tles, bowls, beam balances, tape recorders, translators, transcrip-
tions... and so on, ordering them all into an almost smooth operation.
Nothing would have happened without my energy, my organizing,
my bringing and carrying, my telling others to do this and to do that,
my arranging by putting this here and that there, saying this and that
with a zealous and obsessive bossiness.”

—Helen Verran [412, p. 146]

In HCI, the framing of race as a levered mechanism or reclaimed technol-
ogy has proved productive and inspiring [96, 86, 49]. Yet to use race as a lever
depends on an existing cultural terrain which renders that understanding of
“race” coherent. For advocates of the racecraft perspective, the doing of race is
the what of race, the how of race is the knowing of race —they are not separate as
Chun suggests [86, p. 8]. This debate is reminiscent of a similar debate between
intersectionality theory and assemblage theory in woman of color (WOC) femi-
nism. As chronicled by Nash, the debate stems from how advocates of intersec-
tionality theory tend to make separations between “who people are” and “the
way things work” (identity and practice). She recounts that such a dichotomy
is false —that “who people are” can never be understood apart from “the way
things work” —and that such a distinction may derive from inexperience with
how other societies work [293, p. 75]. From the racecraft perspective, race can-
not “act” outside of the cultural framework that renders it coherent. In other
words, Coleman’s example of President Obama’s speech [96], where Obama

is viewed by insiders as fluidly shifting between racial ‘codes,” is totally ‘en-
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crypted’ to someone outside U.S. racecraft [265]. While within the racial house,

race can function as a trapdoor, the Fields view race ultimately as a trap.

I now explore three examples of how racecraft operates in HCI: race as phe-
notype, race as culture, and race as identity. What characterizes the racecraft
approach is centering how humans and technology produce race, repositioning
race as an outcome of an interaction, rather than a cause. Often, this inverts com-
monsense cause and effect. When racecraft acts as a worldview of the author(s),
it is not necessarily the artifacts under study that “have politics,” but rather,
that the authors’ politics “have artifacts.” Since others provide more historical
accounts of race-thinking [53, 189, 58, 69], I use concrete examples, not to single
out authors, but as a pedagogical opportunity to explain the perspective. Note

that the underlying phenomena are widespread across HCI —and not only HCL.M

Examples of racecraft in HCI

The most common racecraft is the conflation of race and phenotype. Despite
repeated warnings [53, 69, 236, 66], it continues to plague HCI studies and
datasets. We find that AirBnB host race “influences” the price of AirBnB list-
ings [218, p. 9]; the “race” of hands “impacts” purchases on eBay [29]; or “the
person’s race influences” how angry they are perceived by emotion detection al-
gorithms [355, p. 1,6]. Applying racecraft, ‘black’ people are not more likely to
be perceived as angry; people are ‘black” because the algorithm perceives them
as angrier, relative to other faces. While categories can support quick analysis, I

urge researchers to consider reframing such studies in terms of producing racial

Por instance, analyzing 63 public documents from major tech companies, Hamilton found
that they were saturated with racecraft [185]. Note too that this represents the racecraft perspec-
tive, and not all views; for instance, Benjamin [49] seems to conserve aspects of racial groupness
(understandably, perhaps because she is writing to a popular American audience).
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difference [447, p. 95]. “Neither ‘witch’ nor “pure race” has a material existence...
Both are products of thought, and of language. Having no material existence,

they cannot have material causation” [142, p. 22].12

More pernicious is the conflation of race and culture [142, p. 102]. In 2020,
computer scientists at Stanford and Georgetown published a study in PNAS,
a prestigious journal [242]. Comparing datasets of small samples of “white
speakers” from California and “black speakers” from the eastern U.S., they plot-
ted race as independent variables and found ‘racial disparities” in recognition
of Afro-American Vernacular English (AAVE). The location with the highest
word-error-rate for ‘black’ speakers was Princeville, NC, named after Turner
Prince, a freed slave who, after the Civil War, built houses for other freed slaves
near Union stations.!® Another location, Rochester NY, produced no significant
difference from ‘white” speech, which they call an “anomalous” result [242, p.

7685].

At first glance, U.S. readers may wonder what, exactly, is wrong with this
study. After all, a “racial disparity” was found between “white speakers” and
“black speakers” —isn’t this a socially beneficial finding? Said Reed & Chowk-

wanymn:

“Our overall concern is the extent to which particular inequalities
that appear statistically as ‘racial” disparities are in fact embedded in

multiple social relations and how the dominant modes of approach-

2When positioning race as a cause, I often see HCI scholars cite books that say doing other-
wise is “colorblind” racism (e.g., Kleinberg et al. & Yu et al. [240, 440]). This confusion between
racism and race seems to come from how well-meaning race-conscious approaches may unwit-
tingly naturalize race.

13Princeville is the oldest town incorporated by Afro-Americans in the U.S., vibrant and thriv-
ing since 1865 in spite of pervasive Southern racism. On the webpage to the town, residents
lament how when researchers visit, they seem totally unaware of the town’s history [402].
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ing this topic impede the understanding of this larger picture. We
believe that too much writing... is laced with generic, a priori as-
sumptions about the role of racial categorization that then straitjack-
ets research and tempts researchers... to ‘load the dice in favor of
one type of description’, in this case, characterizing disparities in
outcome as strictly ‘racial” and thus resulting in the ho-hum and one-

dimensional research conclusions we have mentioned.” [351]

Consider how the racial framing obscures, then, the fact that the “white
speech” sample is assumed to be representative of the entire “white” popula-
tion of the U.S. —over 200 million people —even though only a small segment of
white Californians are represented. This small segment from the West Coast is
then compared to similar small segments of black participants from the North-
east and Southeast U.S. The part of the sample from Rochester, NY shows no
disparities with white Californian speech, so the authors dismiss it as “anoma-
lous” —i.e., it is surprising to the authors that the speech recognition system had
no trouble with recognizing black New Yorkers, when they are (assumed to)
speak very differently than white Californians. Any other ‘races’ of speakers
—the ‘anomalous data’” —the authors shuffled away by excluding it a priori from
their comparison, exactly as such data needs to be shuffled away for people to

maintain their ‘racial’ rationality [334, p. 447].

In other words, it is entirely possible that a significant part of the disparity
was due to the difference between West Coast and Southern accents —this pos-
sibility is never accounted for, however, even in the supplementary materials,
because it might have never occurred to the authors or the reviewers to account

for it. Instead, we are told ‘the outcome’ of the speech recognition technology is
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‘racial’ disparity, simply by virtue of Afro-American involvement. “Segregation
disappears as the doing of segregationists, and then, in a puff of smoke —paff
—reappears as a trait of only one part of the segregated whole” [142, p. 17]. The
actual outcome of many studies is to produce race, “constantly churning out fac-
titious evidence for an ever-expanding American immensity, the so-called racial
divide” [142, p. 24]. Had the comparison group to the ‘white” Californians been
‘black” Nigerians, one wonders whether the disparity would be called ‘racial’
—or, for that matter, ‘white” Appalachians, Newfoundlanders, or Louisiana Ca-

juns. Not only do datasets have politics, politics have datasets.

Even sneakier is the widespread U.S.-centric assumption that everyone ‘has’
a racial identity. The Fields are steadfast in shifting towards language of local
ethnicity, not race, to separate conflations of identifications and identities [68,
264].1* When people talk of race in HCI, they often adopt racecraft language,

s

e.g. “No matter where you live, race makes an impact on your life,” “there is no
outside of race,” race is “one aspect of identity” [374]. The Fields remark that
“the very phrase accurate racial identity ought to set off sirens. Dangerous lies do

not always dress the part” [142, p. 3].

Across HCI, intersectionality theory has deployed the concept of racial
identity, often setting it on-par with other identities, such as gender or class
[373, 305]. Intersectionality theory embodies long traditions in Black feminism
and is a critically important tool and starting point for analyzing structures of op-

pression [99, 293, 344]. Yet we find scholars, even accomplished ones like Omi &

4The Fields’ ‘identification’ differs from Stuart Hall’s, for whom it is a personal “recognition
of some common origin or shared characteristics with a person or group.” Hall’s concept of
identity —which he admits is “not widely shared” —appears more like the Fields” identification,
an imposed category [184]. Unfortunately for Hall, in common discourse today, identity is not
meant as an ascription, but rather a personal identity, often by placing it alongside gender,
religion, etc. It thereby ensures the racecraft that transforms a description into a classification
escapes notice.
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s

Winant and Collins, claim that race is “central to everyone’s identity,” “consti-
tutes a fundamental aspect of human identity” [309, p. 112,246] or “[e]veryone
in this room has a race/class/gender specific identity” [98, p. 28]. From the
Fields” perspective, “race as identity breaks down on the irreducible fact that
any sense of self... is subject to peremptory nullification by forcible extrinsic
identification” [142, p. 157]. Thus “a Puerto Rican, used to not being classed as
black in Puerto Rico... may find herself suddenly identified as a black person”

in the U.S. and discriminated against [418]. Said Puar in a somewhat (in)famous

critique [293]:

“Intersectionality demands the knowing, naming, and thus stabiliz-
ing of identity across space and time... [it] den[ies] the fictive and
performative aspects of identification... [and it] colludes with the
disciplinary apparatus of the state... in that “difference” is encased
within a structural container that simply wishes the messiness of
identity into a formulaic grid... Identity is... a capture that proposes
what one is by masking its retrospective ordering and thus its onto-
genetic dimension —what one was —through the guise of an illusory

futurity: what one is and will continue to be...” [343, p. 212-6]

Intercultural perspectives are important here. When a BBC reporter went
to interview members of the so-called “Coloured community” in South Africa,
one man challenged the premise of her visit: “History has been distorted, so
much so that even the Coloured believes he’s a Coloured. Even though this

identity was forced upon us by the colonialists” [75].° In another example, a

5Tn the U.S, an anti-racist activist, Starlette Thomas, eerily echoes the words of that man:
“We’ve been told that we are colored people [sic] for so long that we cannot even imagine who
we would be apart from race. It is impossible to consider because ‘this is the world that we live
in.” We don’t believe that we can change it so we allow it to change us” [399].
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‘black’ Japanese woman claims she “saw color since birth, [but] never saw race.
It was never an issue. And I learned it going to America” —despite growing
up surrounded by kids who were phenotypically ‘Japanese’ [397].1¢ Her Afro-

American parents explain:

“When we took [our kids] to church [in Japan], and met new people,
and we asked who they talked to, they would say... “Well, she’s pink.
Or light pink. Or... dark brown’... And so when we went to Amer-
ica one day, they came home and said something about somebody
being black. My heart dropped. ‘Oh here it goes. They learned the
white/black thing.” And I said to my son, you know... I've never met

anyone black.” [398, 12:00]

How did the woman's ‘race’ intersect with gender prior to the U.S.? No one
can answer without equating a description with a classification. The woman
goes on that the “hardest part” of being in America was that “people are always
going to ask me questions and I have to be ready with an answer with an iden-
tity” [397]. Americans exert intense pressure: they somehow need to ‘know” one’s

race. In their ‘need to know,” they create race.'” Historically, ‘identity’ emerged

1Living in a rural village in the 90s, surrounded by a small community of ‘Japanese’ kids, she
claims, multiple times, she was never discriminated against. Note that in many other places in
Japan, there is discrimination against ‘foreigners,” which can intersect with ‘black’ racialization
[24, p. 63-5]. The hafu /»— 7 seem the most discriminated (although this is changing), but it
is not limited to anti-Blackness [362, 361]; for instance when Nippon Airways decided to don
“whiteface” and Ariana Miyamoto’s best friend, a half-'white” hafu, committed suicide from
school ostracization [431]. This general racism towards ‘foreigners’ may appear alien to U.S.
observers. Imperial Japan’s concept of minzoku [X ffi appropriated Western scientific racism to
justify a caste hierarchy imposed on Burakumin, Korean, Chinese people, etc. [231, p. 27-8].

17 Adrian Piper states that announcements of ‘racial’ identity “put everyone in their place”
by “attempt[ing] to racialize their audiences... as either conforming to or diverging from that
‘racial” identity. These attempts fail systematically and by definition... Rather, [they] reif[y]
those crude racial stereotypes into an unconvincing simulacrum of social reality in an obsessive-
compulsive ritual of wishful thinking” [336].
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from psychoanalysis to mean sameness and rose in the 1960s United States for
politics and consumerism [283]. Race-as-identity, mistakenly serving as a syn-
onym for phenotype, once more hides how race becomes [303], reinstates U.S.
dominance, and naturalizes the products of racism. Worse, the concept creates
a recurring issue for those who have rejected it: for instance, when HCI scholars
call Indigenous a “race” [373] or “Native American” a “culture” [428], conspir-
ing with blood quantum policies to re-instate Native peoples as a racial group
[23, 329, 363, 126, 405, 244]. One Apache woman remarked of blood quantum:
“my sisters are short 1/16 of a degree. What does that mean? Does that mean

their pinkies aren’t Apache?” [383].

Widespread across the U.S. and HCI education, works in anti-racism such
as Tatum [394] forward theories of racial identity that, making U.S.-centric as-
sumptions, tend to presume such an identity will or should arise. Hoyt in-
troduced a framework of “non-racial” identity and argued that racial identity
must consider agency. Mobilizing a metaphor of the “room of racialization”
that echos Morrison’s racial house, he acknowledges the potential empower-
ment of racial identity, but wishes to guard against pathologizing its embrace
[206]. Throughout education, Tatum and others’ theories of race-as-identity
hold sway, and complications like Hoyt, Spencer, or Puar’s are given little to no
attention, dismissed, or suspect [293, 377, 343, 206], even regarded as traitorous
[342, p. 53]. In the process, educators who ascribe race to children overlook
their part in the perpetuation of racecraft. The Fields remind us that in trying
to define race, Du Bois “repudiated all efforts to define race as a characteristic
or attribute of its victims... whether the definition hinged on biology, culture, or
identity... The black man is not someone of a specified ancestry or culture... A

black man ‘is a person who must ride ‘Jim Crow” in Georgia’” [142, p. 158].
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4.2 Birdcraft: a cultural algorithm activity for racial literacy

Although I could certainly continue applying the racecraft perspective to other
work in HCI, I would like to shift gears now back to our original topic of con-
cern: using the concept of algorithms as a mechanism to reveal cultural on-
tologies like racecraft. Like Benjamin’s focus on racism as an “input” to tech
[49], rather than asking how culture is embedded in algorithms, “cultural algo-
rithms” asks how algorithms are embedded in culture. ‘Cultural algorithms’
does not mean that humans are rigid automatons; instead, this perspective
adopts Abebe et al.’s algorithm as formalizer [2] to position computational prac-
tices and tools as an integral part of analyzing the construction of societies. The
idea of using cultural algorithms to help participants deconstruct social cate-
gories was influenced by Bekerman’s work in critical peace education, which
argues that peace cannot be imagined from within certain societies” social con-

structions [47].

4.21 The Design of Birdcraft

To help students get outside their heads, we designed a fictional bird world.
Island A has birds with relatively short legs, Island B has birds with longer
legs. One day, birds on Island A got greedy and flew to B to get more wormes.
They imposed a caste system on the Island B birds, defining a sorting procedure
for grouping who is Short and Tall, a descent algorithm to sort offspring, and
the attributes and treatment of each “group.” The worksheet for Birdcraft is

depicted in the full-page Figure 4.1.
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Our “bird caste system” is algorithmic in structure, reflecting Hoyt’s five
steps of racialization [206]. Hoyt, a diversity educator who speaks of disrupt-
ing racial ontology, teaches the process of racialization as an algorithm with five
steps —Select, Sort, Attribute, Essentialize, Act [206]. Differences may not be
visible but could be class-based or location-based, such as what someone owns
(e.g., cattle was one indicator in Rwanda) or where someone lives; Wilkerson
provides an example of height as a determinant of a fictional caste system [426].
Oppressors make the caste position hereditary through rules on descent, as in
the Nazi Germany Nuremberg Laws, Indian caste system, U.S.-based one drop
rule, blood quantum policies, or German and Italian citizenship laws [206]. Op-

pressors then act on these rules, seeking to naturalize them.

For instance, under Step 2: Sort we had the editable pseudocode:

o Sort into group based on attribute ("leg size)

PROCEDURE SORT_BIRD(bird):

IF bird’s leg > 3 inches THEN:
Return TALL

ELSE:

Return SHORT

The algorithms are designed to sometimes lead to ambiguities or contradic-
tions; e.g., you can’t use the Sort procedure to arrive at a Medium bird, this is
decided only from ancestry —-resembling how “mixed race” is determined in the

U.S. [377, 142]. Reflecting this, in Step 4: Essentialize we had the pseudocode:
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o Essentialize differences: make caste hereditary
through rules on descent

PROCEDURE SORT_CHILD(bird A, bird B)

IF A is TALL and B is SHORT:

~—

Return MEDIUM \u

ELSE IF A is TALL and B is TALL:

=

Return TALL

ELSE IF A is MEDIUM and B is TALL:
Return TALL

ELSE IF A is MEDIUM and B is MEDIUM:
Return MEDIUM

ELSE IF A is MEDIUM and B is SHORT:

Return SORT_BIRD(child of A and B)

To introduce Birdcraft, we first explain Bird World, then assign participants
bird identities: category (Short, Medium, Tall) and leg size (2-8 inches). We
give some Short birds 3 inch legs (right on the sorting line) and some Tall birds
4 inch legs, to approximate the kind of messiness in real-world categories of
race.'® Finally, we task groups to make Bird World more “fair.”'’ Participants
are put into breakout groups by their category and edit a shared worksheet
(on the on-line version of this activity, a Google Slide). They could change the

worksheet and pseudocode anyway they wanted. We wondered if and how

18“Short-passing” birds —analogous to white passing —emerge naturally as a consequence,
leading to a few confused participants wondering why they were still considered “short,” given
that their leg size put them right on the edge of being in the dominant group.

191d like to note how this design emerged from Ariam’s expertise. Originally,  had suggested
a design where participants would be given a category —short or tall bird —and then tasked with
attaining some material resources. This could have had the consequence of making it a com-
petition, reproducing or entrenching the “heightism” of bird world. Instead, Ariam suggested
that it be designed such that, regardless of their assigned category, participants were tasked
to change the society for the better. This put participants in the position of a social activist,
while also succeeding in making the “short birds” —~the dominant group —a bit uncomfortable in
reflecting on their status in this unequal society.
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bird identities would play a role in their decisions.

Our design choice to give participants identities means that they could not
operate from a “veil of ignorance” to produce just outcomes [346, p. 118], but
rather reflected the position of critical race theorists, who argue that it is not pos-
sible for members of a society to disengage from their social positioning when
working towards justice [115]. At the same time, the fictional framing of the
activity aimed to help participants disengage from their real-world identities,
while setting up a proxy world where discussions emerge that are analogous to
real-world situations. The potential benefit of such a “proxy activity” is that what
could be a very charged discussion, were actors directly implicated in the debate
(possibly spiralling into denial, defensiveness, or personal accusations), is dif-
fused into a fictional situation, which nonetheless has analogous implications.
The downside is that additional work may be necessary to transfer participants’

learning in the activity to the real-world context.

The Birdcraft activity ends with a short lecture introducing Morrison’s con-
cept of the racial house, the notion that racial categories are like ‘rooms’ in the
house, and connects it to three “stages” of anti-racism that I came up with: color-

evasiveness, race-consciousness, and racecraft-consciousness.?’

2Here are some definitions, paraphrased from an audio transcript of the lecture in ques-
tion. In color-evasionness phase, the people in the top room (in the U.S., wealthy white peo-
ple) are saying, ‘well, everyone’s the same,” and over-looking racism and inequality. While
arguably better than explicit racism, this does nothing to resolve racial hierarchy. In the race-
consciousness phase, one argues that we should “see race” and we should celebrate racial dif-
ference and strive for racial equality. Phrases are used like, “anti-racist ideas are those which
declare racial groups are equals in all their apparent differences” (Kendi). Now, it’s like every-
one’s in the living room eating together, and those from the top floors have pledged to refurbish
all the other rooms so that everyone’s going to have the same quality room as everyone else.
Ultimately, however, those in the top rooms are still in the (labelled) rooms, and if those below
have kids, they’re not going to be able to get the keys to the top room. (i.e., racial groups in the
U.S. are constructed and maintained through asymmetric cultural rules on descent; see Spencer,
Ignatiev, and Wolfe [377, 211, 434]). Finally, the third stage of anti-racism is racecraft conscious-
ness, which argues that we should see how we produce race. We should attend to racism, but
also start to deconstruct race while we attend to racism. In a racecraft conscious world, at the
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In the following section, I describe general takeaways from our two deploy-

ments of Birdcraft.

4.2.2 Deploying Birdcraft with participants

Ariam and I tried Birdcraft in two contexts: a small middle school class over
Zoom (12 participants, including 2 adults), and as part of a larger workshop
with CS educators (9 participants) at a prominent organization which facilitates
professional development programs for CS teachers.?! Each took about an hour.
The study was exploratory and informal: the former context was not recorded,
and evidence is anecdotal (from notes written afterward). The latter was video
recorded with the permission of the participants; however, because Breakout
rooms in Zoom could not be recorded at the time the research was conducted,
we could only capture the debate afterwards. Nevertheless, what little data was
collected suggests the potential for cultural algorithms activities in the future. It
appears that, as anticipated, groups came to very different conclusions on anti-
racist strategy that are often analogous to real-world situations. While some
of theses analogous situations were by design, others were not anticipated by

either of us, and emerged as a consequence of the setup.

Here I relay five situations that emerged: debates over whether the initial
sorting is itself wrong (Steps 1 and 2), renaming of the oppressed group, dilem-
mas between deconstruction of caste and the need to reify caste in order to re-

pair past harm, concern over the fate and status of “multiracial” individuals

end of the racial house, the racial house (the racial hierarchy) would be destroyed. (Arguably,
the framing of this as “stages” conveys an ordering of value for each perspective, with racecraft
as the most valuable; some may take issue with this ordering.)

21 A professor at a state university also ran the activity, to anecdotal success, in his classroom
on “Race and Technology.”
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(Medium birds), and positioning multiracialism as the ‘solution” to Bird World’s
racism problem. When referring to groups, I will use a prefix to distinguish con-
texts: "MS" for middle schoolers, and "Educator" for CS educators. Note that in

the middle school Zoom class, each group had one adult present.

Whether the initial sorting is wrong (Steps 1 and 2)

In both contexts, groups appeared split on whether the initial act of caste cate-
gorization was a problem. Some decided to keep castes but change the sorting
procedure. For instance, the MS Mediums decided to categorize on Wing Span
instead of Leg Size. They changed the Sorting algorithm to produce “Big” and
“Small” categories, with the dividing line the average bird wing span according
to Google. While they changed the Step 3: Attribute code to give all types of
bird the “friendly” trait, they labelled Big birds as “assertive” and Short birds

as “passive,” giving preference to a new caste of bird.

The MS Shorts (the oppressor caste) followed a similar tact. They decided
to not change the categories or sorting rules, but rather distribute treatment
more “equally.” Talls now got the best nests, but last choice on worms; Shorts
the opposite; and Mediums flew at the front of the flock, but their nests and
worms were just “okay.” This is akin to the “racial equality” route, where racial
groups themselves are not problematized and the problem is distributing re-
sources equally among them. Said the Educator Mediums, who took a similar
route: “We changed the traits because we were like that’s where it goes downbhill. That’s

where the negativity starts.”

New algorithms for sorting also emerged for those who erased the original
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sorting rules. For instance, MS Tall birds decided to erase caste categorization
itself, arguing that the act of sorting was itself discriminatory. They removed se-
lection and sorting procedures, but wanted to reassign jobs according to phys-
ical attributes. For instance, birds with large wings were flyers, birds with the
sharpest beaks would collect food, and tall legged birds served as “workout

trainers.” They defined no specific sorting policy for assigning categories.

Meanwhile, the Educator Short birds also decided to erase Select and Sort
steps, but created more algorithms about what birds should do based on jobs

they self-select into:

“We decided to we got nervous about the amount of resources on this island.
I mean, there’s a lot of us here now, and we thought maybe we should just
get rid of these attributes altogether... We wanted to know if people would be
willing to split into groups of stick finders, food gatherers and nest builders.
And then we wrote some algorithms to go with that. So where, you know, if
we don’t want to split up into reasonably equal groups, then maybe we take

turns doing things.”

They wrote their algorithms as Steps 1, 2, and 5 on the worksheet, after eras-

ing the algorithms on traits and ancestry (Steps 3 and 4):
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e We believe that we need to work together
to manage resources...

Group birds into:

e Stick finders
e Food gatherers
e Nest builders

Groups are porous - you can
move between them. And you do
what brings you joy.

o Sort into group based on attribute (preference)
If each group has at least
Population/5 members) {
Run RESOURCES}
Else{

Run Distribute Roles}

The RESOURCES procedure here was defined in Step 5:

RESOURCES
If community needs food then {
FOOD GATHERERS gather worms;
Worm bin = full;
Everyone enjoys a meal together;
Worms are distributed to all birds equitably

While birds in community need a nest {
If Stick_Bin = Full {
NEST BUILDERS build nest}
Else{STICK FINDERS gather sticks

As this demonstrates, one emergent issue with the activity is that some
groups could get fixated on the genetic attributes of the birds -how long legs

might require bigger nests or could reach better food:
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“Well, I know in our group [Educator Short birds], we started out with
the conversation of, maybe the long legged birds can get like fruit off of a
tree more easily and the short leg birds can focus on like... So we were still
talking about collaboration, then [fellow Short bird] was like, but that’s still
categorizing people based on this attribute. And so that’s when we went the

other direction.”

This fixation with hereditary attributes also occurs above, when the MS
Mediums recategorize on Wing Span and look up average bird wing size on

Google to make their sorting algorithm “precise.”

Oppressed group renames themselves

In the activity with educators, the oppressed group renamed themselves, anal-

ogous to many such instances in history:

“We no longer identify as Tall bird. We identify as Big bird. And we
changed the traits that were given to us. We thought long and hard about
what we would do. And what we landed on is figuring out how to expand
resources and become more adaptable... [Fellow Big bird], do you want to
add to that?” "Sure. I just want to say, that as Big birds, we are beautiful,
resourceful, smart, and also leaders. Y’all just didn’t know. But, because
you came and joined us, we no longer have a lot of resources, so we thought
of a few options. One, we want to work with you to figure out how to
repopulate your land. Because you clearly came to our land for a reason. So,

because we clearly have a better resource management strategy, we thought
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we could share [that] with some of you. And we also thought of expanding

our resources, like eating fish or bugs, maybe those are actually better.”

Possibly, the educators in this group were using the artifice of the bird work
as a proxy for talk about U.S. racism and colonialism (i.e., the group’s choice to
rename themselves could have been to deliberately parallel such acts in history).
The reframing of Tall to Big caused participants to try to respectfully change
how they called the other group (e.g., “Our Medium birds change was re-assigning
the trait of Big birds (previously Tall birds) to ‘unique’, nice, giving, and inventive as
opposed to weird, scary...”). The oppressor group tried to respect the oppressed

group’s decision, but also expressed a desire to “just be Birds”:

“I mean, similar to the Tall —the Big birds, the Big Birds, sorry. [...] So [as
Short birds], we’re going to change our ways, and we're happy to call you
Big birds. If we want to still refer to each other that way, or we can just,

you know, we can just be Birds.”

This last point is analogous to some white American’s retort, when con-
fronted with anti-racist efforts or assertions of Black or Indigenous identity:

“why can’t we all just get along?” or “why can’t we all just be Humans?”

At one point Ariam asked the Big birds: “What if some of the Short birds
refuse to accept your designation as being Big birds and they continue to just
still call you Tall?" “We just hang out with the cool birds,” retorted a Big bird.
“Cool birds only! It's all fake, anyone who’s cool can come hang out with us.” At
tirst glance, “it’s all fake” here seems to relate to the constructed nature of the

activity. In the context of the discussion, however, “it’s all fake” is more likely
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a critique of the sorting process itself (i.e., the same comment was made right
after a comment about how two birds with same-length legs count as different
categories of bird). In this reading, “cool birds” are those who have given up
their dependence on caste sorting for their identity. However, note that the Big

birds have not explicitly given up on calling themselves Big birds.

Dilemma between deconstruction of caste and the need to reify caste in order

to repair past harm

In the activity with educators, a dilemma arose between deconstructionist tac-
tics and the need to reify caste in order to repair past harm. After the Educator
Short birds announced their solution was to erase caste categorization, the Big
birds agree on principle, but question how quickly the Short birds want to move
on from the past: “There is a question about accountability, though. Because, cuz y’all
[short birds] were real messed up... You know, it’s cool. You're trying to change your

ways. That'’s real good. But where’s the accountability?”

After this retort by the Big birds, a Short bird questioned their approach to

consider accountability and reparations:

“What I was wondering about is like, where are the attributes enter the
algorithm? And in the algorithm we were starting from, they were the pri-
mary kind of grouping. And so we deleted that and made those attributes
irrelevant to the acquisition of materials, etc. But we could re-enter... we
could do re-ascription or reattribution when it comes to the distribution of
materials. But then there’s the leg length question versus like, is it actu-

ally tall or small? I'm sure many of you noticed there were like, tall birds
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with five inch legs and medium birds with five inch legs. So like maybe
we don’t need that grouping, but we might be able to agree on some, like,
need-realities based on specific attributes, i.e. create little mini algorithms
that are in there... What I was thinking about is... how can an algorithm
register difference in equitable ways without producing that difference as a

‘reality effect’ that then everything else is based on and seems immutable?”

This question of “who gets reparations” reflects real-world debates on how
to determine and best enact reparations for the long legacy of racism in the U.S.
As Spencer and Hoyt argue from the deconstructionist anti-racist position [377,
206], some ascription is necessary in the short-term for redressing past harm and
reallocating resources. The question “is it actually tall or small?” showed the
inherent difficulty of relying on racial categories, given their constructed and

inconsistent nature.

Concern with fate and status of Medium (multiracial) birds

In both contexts, the fact that some birds with same-size legs were sorted into
different castes —a deliberate design choice by us, that emerges from the arbi-
trariness of the Bird world cultural algorithms —bothered participants. For in-
stance, an Educator Medium bird asked another “how tall are you? How long
are your legs?” to which they replied five inches. A Big bird remarked, “[Big
bird] is also five inches. So [other Medium bird] and [Big bird] have the same
length of legs.” I added to this, remarking that I have only three inch legs (I
was given a Medium bird identity, but did not take part in their breakout room
discussion). Said a Medium bird: “We couldn’t figure out how these three very

different birds ended up in this category.”
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Identifying inconsistencies in the caste categorization algorithms intersected
with a concern over the fate of Medium and “passing” birds (Short birds with
3-inch legs). For instance, after the Educator “Big” birds proposed to repopulate
the Island where the Short birds came from, a Medium bird interjected, “well if
we're gonna repopulate the place where the Short birds came from, where are
the Medium birds supposed to go? Because we’re not short or big, but some
of us are kind of big and some of us are kind of short.” In the MS Shorts, one
bird with 3 inch legs argued against changing the rules because they were “just
squeaking by” to sort into the Short group. This is analogous to a situation
where an American who passes as white is reluctant to give up the privileges

afforded by whiteness, at the expense of those who cannot pass.

Multiracialism as the ‘solution’

In the middle school class, two groups positioned multiracialism as a solution to
the problem. Short birds changed the ancestry algorithm to allow the offspring
of Tall and Medium birds to be Medium instead of Tall, and justified the choice
by claiming, “it’s more fair if more birds can be Medium.” The Medium birds
meanwhile changed the sorting algorithm on descent, adding new categories
“Medium big” and “Medium small” for describing offspring. One member’s

rationale was that more Medium categories might diffuse discrimination.

Positioning multiracial identity as the solution to racism resembles the mul-
tiracial identity movement of the 90s [377]. Spencer argues that such a position
merely serves as yet another smokescreen for racism in the U.S. and supports
white supremacy. He argues that there is nothing novel about “multiracial”

identity, as across the history of the U.S., there were many (now outdated) terms
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for “multiracial” individuals. Multiracialism hides anti-Blackness, in that it im-
plicitly normalizes the premise that there are pure races and obscures the cul-
tural one-drop rule against Afrodescendants in the U.S. The only solution, he
argued, was for those in the U.S. to practice what he called racial suicide, or op-

posing the notion of racial identity.?

4.2.3 Reflections

After the activity, CS educators expressed that they wanted more time to re-
flect on how their strategies and debates connect back to real-world structures
and debates in anti-racism. In particular, one participant commented that they
found the Morrison metaphor and the color-evasiveness, race-consciousness,
and racecraft-consciousness framing helpful to situating their debates (types of
anti-racism), but would have appreciated more explicit connections to back to
their choices during the activity. We ran a follow-up session with the educator
group over a month later. Educators expressed that they wanted more Cul-
tural Algorithms activities in other areas, including gender identity and social-
emotional learning, such that race/ism was but one activity. Inside this unit,
Birdcraft would appear later on, once students had grasp of the ‘cultural algo-
rithms” concept. Second, they wanted a facilitation guide along with the ac-
tivities, including example responses from students and how to connect these

responses to real-world debates and history.

22Tt is always simply assumed that people need a primary racial identity in order to be com-
plete human beings... The blame for this false consciousness can be laid squarely at the feet of
both psychology and sociology... Race is not a social reality in the U.S.; rather, fallacious belief
in race is the U.S. social reality... Unlike the social constructionist, I do not argue that people
should accept and adopt racial identities; indeed, I argue quite explicitly that they should not.”
[377, p. 249-64]
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While overall the activity seemed generative to participants, there were some
responses and limitations to the activity that future “cultural algorithms” activ-
ity designers should be cautious of. First, while can be useful to describe a
situation in algorithmic terms, our algorithmic framing may have caused some
participants to look for and describe the solution also in algorithmic terms. Par-
ticipants may then look for a clean, top-down, immediately implementable so-
lution, rather than one focused on mobilizing others and building community.
Second, our anthropomorphic framing seemed to lend itself to further essential-
ism of subjects, such as groups categorizing birds based on wing span or asso-
ciating birds with longer beaks as better resource grabbers. Other birds without
these normative characteristics might then be implicitly stigmatized, producing
another —albeit different —social hierarchy. A further iteration of this activity
might call on participants to question such ideas, including the limitations of

the algorithmic framing itself.

Reflecting on the activity worksheet, I would make one alteration. Educator
participants wanted to know how the dominant caste came to be seen as having
positive traits, while non-dominant castes were perceived as having negative
ones. Hoyt’s racialization steps have Attribute as Step 3. However, a key point
of Racecraft is that attributes are normalized only after the oppressor acts upon
caste categorization over long periods of time. Placing the “Attribute” step after

the “Act” step would clarify this directionality.
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4.3 Conclusion

In the future, I imagine Birdcraft sitting within a longer unit on “Cultural Al-
gorithms.” The goal would be to get students to see discrimination and soci-
etal bias as actions, rather than static, pregiven, unchangeable facts. However,
such activities would need to help people transfer their critical thinking about
cultural algorithms in fictional contexts onto analogous real-world structures.
Following this, we could lead into project-based activities to address “what we

do” with this knowledge.

For many of us, it might be terrifying to imagine students remixing caste
systems through algorithmic concepts. But tinkering with oppressive systems
to understand how the hidden gears within them work is one way CS education
might support students to understand systemic discrimination. This does not
mean living in a colorblind world. Quite the opposite: it means acknowledging
and understanding how we have been programmed to assign value to different
groups of people, driven by capitalism and exploitation. It means striving for
Morrison’s home: a future that invalidates the racist paradigm as it is expressed
in our laws, schools, and daily life [286]. Activities like Birdcraft might sound
like the start of a piece of speculative fiction written by the legendary Octavia
Butler —and that’s no accident. Properly and respectfully framed, innovative
work around visionary fiction and social justice can provide us with the imagi-

native resources to realize better futures with and through computing concepts.
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Part 11

Culture in programming
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CHAPTER 5
THE ORIGINS OF PROGRAMMING AS CULTURAL ACTIVITY

“History, as nearly no one seems to know, is not merely something to
be read. And it does not refer merely, or even principally, to the past.
On the contrary, the great force of history comes from the fact that we
carry it within us, are unconsciously controlled by it in many ways,
and history is literally present in all that we do. It could scarcely be
otherwise, since it is to history that we owe our frames of reference,
our identities, and our aspirations.”

—James Baldwin, in “Unnameable Objects...” [38]

The former chapters explored an intercultural perspective on programming
education that addressed the question: how can programming concepts and
activities be put towards people’s intercultural development? Aspects of this
question were answered, but much more work needs to be done. What about
other “cultural algorithms”? How do we measure students’ social and cultural
learning? These questions are all important, and deserve time and attention.
Nevertheless, as I carried out this educational work, another, very different

question gnawed at me.

How are tools of programming themselves “cultural” artifacts? Were not
the artifacts and techniques of classrooms also “cultural”? What assumptions
and values might they circulate? I started to question the material over which
people collaborate —plaintext editors, the QWERTY keyboard, the mouse —as
representing the culmination of historical processes. What exactly is the her-
itage of Scratch, of monitors and keyboards and programming “languages”?

After searching far and wide, however, I could not find a satisfactory account
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that was broad enough to bridge the literature on STS, HCI and programming,
without becoming either a detailed historical piece surveying just a tiny part of
history, or a piece that anachronistically inserts present-day terms, overlooking
how today’s commonsense terms and phrases used to describe programming

have their own history as social constructs.

To help fill this gap, this chapter traces the sociomaterial fabrication of early
computer programming notation and practice: of how ‘to write code” came to
imply typing characters in text editors and terminals, rather than (for example)
a practice involving handwriting or drawing. Through three case studies of
the earliest visions of ‘writing code,” I recall the emergence of high-level' pro-
gramming notation and computing’s extension of earlier social and material in-
frastructure of the typewriter and card-based processing. Adopting a cultural-
historical sensibility to technological emergence, I trace how early inventors’
practices in logic, physics, mathematics, engineering, and art —with their vary-
ing, handwritten and drawn notations and sensibilities -informed and directed
how they fabricated programming notations and practice. I argue that an initial
diversity of styles quickly came into conflict with typewriters and card-based
pipelines, and that notations were thereby serialized and transformed. Corre-
sponding to this transformation and coordinated with the need to align com-
puter science with formal abstraction to justify the new discipline [396, 92], val-
ues became attached to different forms of programming notations that reflect
prior modernist dichotomies in North American and European societies be-
tween the ‘textual” and the “visual,” the ‘written” and the ‘drawn’ [214], aligning

the former with objective authority and the latter with aesthetic choice [318]. By

'High-level refers to notations that would need to be considerably interpreted into machine
code (numbers) in order to run [241]. Assembly code largely serves as a mnemonic device to
numeric codes and are excluded.
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tracing this history, I (provocatively) redefine programming as not just involv-
ing the design of algorithms or systems, but often “a problem of mapping from
one culture to another” [109, p. 138] —from its very inception, a practice which so
often involves translation work which is intimately tied to intercultural conflict,
compromise, and innovation. In so doing, I advance an intercultural lens [215]
on programming practice as a site of social, material, and epistemological con-
testation, not just in the design of contemporary software or for those outside
the societies where computing emerged, but embedded in the design and his-
tory of the very tools and practices which support the development of software,
and the communities and discourses which have formed around them. In the
process, I join other scholars [14, 56, 261] in seeking to “move the centre” [417]
in discourse around programming, making, and HCI more broadly towards a
plurality of cultural perspectives and practices, while leaning away from overly

simplistic rhetoric of the “West’ that denies inner heterogeneity.

To begin, I contend with why ‘writing code” deserves attention, when there
have been numerous attempts —such as tangible programming or direct manip-
ulation languages [278, 209] —to reconstitute programming practice. To demon-
strate how even the most radical visions of programming can end up recentring

a typewritten status quo, I offer the following contemporary anecdote.

51 The Paradox of Change in HCI

In 2017, a group of artists, designers, and software engineers, led by former Ap-
ple designer Bret Victor, came together in Oakland, California to forge a new

vision for the future of computer programming. Their goal was “to incubate a
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humane dynamic medium whose full power is accessible to all people,” pledg-
ing to liberate professional programming practice from the confines of stuffy
offices, isolating screens, and constraining devices. “No screens, no devices”
became the project’s motto and organizing principle. No longer impersonal and
individualized, programming would become communal, social, and democra-
tized. People would “think with their hands, their bodies, spread out, walk

around, compare possibilities, improvise, and experiment” [413].

DynamicLand is a room-sized operating system that realizes visions from
ubiquitous computing and tangible programming, an impressive achievement
by any measure. Yet despite the refrain of “no screens, no devices,” Dynam-
icLand’s core infrastructure is Lua code printed on pieces of paper. To make
alterations to the room-sized program, programmers regularly re-constitute the
bottleneck of the shift-key keyboard and associated standards of ASCII sym-
bols laid out in left-to-right, top-to-bottom sequence on a screen [372]. In order
for “all people” to gain access to computing’s full power, to liberate themselves
from all the screens and devices, the bottleneck of the screen and keyboard again

re-formed.

From a broader vantage point, the DynamicLand paradox highlights a grow-
ing discomfort with contradictions between utopian rhetoric and technology’s
actual ability to enact change, whether in education, politics, international de-
velopment, organizations, or design [403, 330, 261, 358, 381, 311]. In HCI and
beyond, wide swaths of people are now wary of failed promises. Contradictions
abound: companies who profit off of user attention release tools to monitor at-
tention; the rich, after buying the newest marginal phone upgrade, pay again to

have it taken away [208]; teenagers, whose computer use we are told we should
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be concerned about, protest computer over-exposure [384]; the same billionaires
that send their children to ‘disconnected” schools pour millions into connected
learning programs [403]. As the anthropologist Alexei Yurchak found of the ail-
ing Soviet Union, tech today is “simultaneously eternal and stagnating, vigor-
ous and ailing, bleak and full of promise” [442]. Alongside this growing disillu-
sionment with computing technology is a corresponding de-mystification of its
design and professionalization processes. As the field of science and technology
studies (STS) has shown, ostensibly technical disciplines are replete with social
elements: technologies are socially constructed, co-produced with society, and
value-laden [57, 432, 219, 7]. STS perspectives have shed light on programming
practice and histories, whether the role of trust and professional vision in data
science [318, 317], the marginalization of weavers as programmers in the Apollo
program [358], the construction of computing as a science [396, 7, 109], or the
framing of coding as a literacy [410]. Postcolonial scholars have also attempted
to decentre dominant narratives in the maker movement’s rhetoric [261, 14],
suggesting that maker practices should be more inclusively framed as “making
do”: “using the materials and competencies on hand to create objects or pro-
cesses that aid in everyday life,” rather than framed as inherently revolutionary

or democratizing [14].

A complementary issue to the goal of decentring dominant narratives is how
the tools developed to support programming condition thoughts and imagina-
tions. Past scholarship on the influence of material representations on knowl-
edge construction argues that the structure of (typewritten) notations influence
the kinds of problems encountered in their usage [122, p. 8-9]. This argument

is suggestive of situated theories of cognition such as cultural-historical activity
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theory (CHAT), widely applied in CSCW and CSCL? and deriving from Russian
psychologists Vygotsky and Leont’ev [228, 94]. A CHAT perspective empha-
sizes the cultural ® and historical roots of social activity and its mediators and
argues that learning relies on gradual ‘internalizations’ of ‘externalized’ cultural
tools (“such as algebraic notation, a map, or a blueprint” [228, p. 42]). The term
culture here operates in a generative, rather than a taxonomic sense, and is de-
fined by Irani & Dourish as “a lens through which people collectively encounter
the world, a system of interpretive signification which renders the world inter-
subjectively meaningful... [A]n individual may participate in many cultures
—cultures of ethnicity, nationhood, profession, class, gender, kinship, and his-
tory —each of which, with their logics and narratives, frame the experience of
everyday life” [215, p. 2-3]. From these perspectives, programming notations

are cultural tools, affording certain thoughts and frames while resisting others.

However, tools and practices for new disciplines like computing do not arise
in a vacuum; rather, situated practice extends and appropriates pre-existing cul-
ture to new ends. As Pickering argued of physicists, this extension operates
through a mangle of practice, a dialectic of resistance and accommodation be-
tween humans and machines [332]. Comments in postcolonial-oriented papers
can cast programming languages as arbiters of a Western monoculture (e.g.,
[56, 174]), and while reflecting on the entrenchment of certain values, represen-
tations, and assumptions is useful* —in the spirit of Ong’s contrasting of writ-

ten and oral societies [310] —it is perhaps too simplistic an argument to accom-

2Computer-Supported Cooperative Work and Learning, respectively.

3Throughout, I use the term “culture” in a broad sense following CHAT approaches, An-
drew Pickering’s concept of the mangle [332], and Irani & Dourish’s postcolonial interculturality
[215], rather than as a taxonomic classification attached to geographic boundaries.

“Importantly, groups outside of Anglo societies have raised these concerns, such as indige-
nous Hawaiians converting C# to their language [291], Nasser’s Arabic programming language
Qalb [295], and Nguyen’s account of a Vietnamese software community [14].
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modate inner heterogeneity. As Dourish notes, in order to “get a grip” on the
cultural consequences of technology, we must take seriously its “material speci-
ticities” rather than speaking of an amorphous and unexamined presence [121].
What exactly is the cultural heritage of programming notation and practice, be-
yond the obvious use of English keywords? How did ready-to-hand cultural
practices influence the design and development of new ones? And how might
the spread and influence of early approaches impact the current field, whether
visibly or in deeply held, almost invisible ways? While not claiming to answer
these questions definitively, this work aligns itself with a growing number of
scholars at CHI and beyond arguing for deeper engagement with HCI's early
history [358, 359, 237, 8, 14]. I build on this work by trying, as much as pos-
sible, to avoid casting our present-day assumptions onto the earliest history of
programming. Unlike other work on programming focused on end-users, for
novices, or otherwise tools or studies to support the typewritten status quo, 1

call into question here the entrenchment of the dominant regime.

5.2 Human-Machine Interaction Before HCI

To orient ourselves in the past, I briefly outline the state of “human-machine
interaction” around the advent of digital computers. Some historians now re-
gard the emergence of digital computing as a period of gradual change, rather
than a revolutionary discontinuity [109, 181, 101]. The machine ‘computer” ex-
tended workflows of industrial data processing at a time when writing was be-
ing disassociated from writing ‘by hand’ and increasingly associated with writ-
ing through a discretizing (or “technolinguistic” [290]) mediator [101, 28, 214].

The history of HCI is thus also a history of the “eternal recurrence” [239] of the
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typewriter, and to this technology I shed some light here.

The dominance of typing is of course a topic many scholars have commented
on. Like Latour’s crashing of distinctions between the human and nonhu-
man [248], early twentieth century philosophers framed typewriters as hav-
ing agency. Nietzsche wrote that typewriters have “fine fingers, to use us,”
and Heidegger, who believed the hand was “the essential distinction of man,”
warned that the typewriter “imposes its own use” on humankind, transform-
ing “the relation of Being to man” [239, p. 198-200, 207]. Phenomenologists and
cognitive scientists would echo these notions later in their concerns about, for
instance, shifts from the level of “paragraph” to “sentence” and shortening at-
tention spans [266, 81]. Recently, the anthropologist Tim Ingold harkened back
to these concerns when he called on HCI designers to imagine an antidote to
discretizing technology: “a technologically enhanced sensitivity, brought into
the service of hands-on engagement with materials in making, [which] could
genuinely enlarge the scope of humanity, rather than further eroding it” [213, p.

124].

The history of the typewriter is some respects reflects warnings about its
homogenizing effects. While much has been made (and debated) over the QW-
ERTY layout [42, 110], a less reflected on and even more pernicious case of path
dependency is the shift-key mechanism. The Remington II shift-key typewriter
was optimized for the lower frequency of capitalized letters in English and first
designed by American companies embedded in a left-to-right, top-to-bottom
written culture [7]. In The Chinese Typewriter, Mullaney shows how non-English
writing systems were adapted to the standard with as little modifications as

possible in order to lower factory assembly costs. In popular media, the type-
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writer became a symbol of modernity, a machine whose dissemination brought
the coming of civilization. Written cultures became judged by their ability to
be consumed by the shift-key style and faced pressures to change or romanize.
For instance, Chinese logograms were debased in both global and domestic dis-
course (e.g., by Mao Zedong), and the Thai language lost two characters due to
space limitations (a change which persists today). Moreover, the name ‘type-
writer” conditioned how people interpreted and imagined other technolinguis-
tic machines; for instance, early Chinese typewriters did not in fact have keys

[290].

As the shift-key typewriter monopolized writing and threatened cultural di-
versity, an intimate symbiosis between the computer and the typewriter became
drawn in the theories and metaphors that retroactively [180] came to define
the discipline of computing. As a boy, Alan Turing pictured himself invent-
ing typewriters to mitigate his poor handwriting; as an adult he preferred to
type than write [239, 200], behavior atypical among many of his mathematical
contemporaries.” In his seminal 1937 paper on computability, Turing describes
a generalized typewriter that prints characters on a page with four extensions:
it uses an infinite paper tape; can remember and erase symbols in place; and, in-
spired by the shift-key, may switch between a variable number of configurations
[406, 200]. Turing’s later paper on artificial intelligence calls the typewriter inter-
face the “ideal arrangement” through which to verify intelligence, echoing the
civilizing guise of earlier discourse At the same time, infrastructures of large-
scale data processing came to prominence in U.S. accounting. Dorr Felt's Comp-
tometer and William Burroughs” adding machine products, fitted with keys in-

spired by typewriters, were “the two most popular sets of devices available in

°As was common at the time, Turing would handwrite in mathematical notation that ex-
tended beyond his typewriters” abilities (e.g. [200, p. 356]).
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the U.S. at the turn of the [20th] century” and could add and multiply numbers
[28, p. 30-1]. For larger businesses or government data processing, Herman
Hollerith’s punch card machines formed a system for storing, tabulating, and
sorting data [109] (prominent manufacturers included Hollerith’s International
Business Machines (IBM) and Remington Rand). As Aspray notes, these three
“legs” of computing —typewriters, adders, and punch card processing —were
already stabilized for around three decades before the advent of electronic com-
puters [28]. The “operators” of these machines —typists, clerks, secretaries —-were
largely and increasingly women. Only the advent of World War 1I brought ad-
ditional attention on applied mathematics and temporarily destabilized gender
roles in the data processing industry [7, 385]. By the advent of digital comput-
ers, the social elements of computing —routinization and the division of labour,

and feminization of the workforce —had long been in place [243].

5.3 The Culture “in” Early Programming Notations: Three Vi-

sions

According to a report by Knuth & Pardos [241], the two first high-level program-
ming notations emerged around the mid-1940s in Germany and at the ENIAC
project in the United States. Several years later emerged several typewritten
visions of programming in Europe and North America. Here I explore these
earliest acts of HCI design through lenses of materiality and situated, cultural

perspectives on knowledge construction.
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5.3.1 Konrad Zuse’s Vision

During the cold opening months of 1945, as Allied planes bombed Berlin, the
German inventor Konrad Zuse huddled in safety with his family. His inventions
the Z1-3 computers lay blown to pieces in the ruins of his center-city workshop.
He secured a truck to transport his wife, assistants, and sole remaining com-
puter, the several-ton Z4, out of the city. Reaching the alpine village of Hinter-
stein over 650km south, Zuse setup the Z4 in a barn, but found the machine
was broken. Secluded from the world with no means to continue construction
on computers, he put pen to page, seeking a “universal formula language” for
computation as an extension of his dissertation [450, p. 212]. This language he

named the Plankalkiil, the first high-level programming notation [241, 181].

All of Zuse’s prior training and interests accompanied him to Hinterstein.
As a photographer and artist, he had painted posters, wrote poetry, and acted
and directed theatre, performing as “unknown inventors or artists” [450, p. 26];
as an engineer and inventor, he was trained in mathematics, formal logic, and
civil engineering. He combined these seemingly disparate interests in efforts
such as applying descriptive geometry to the optimal viewing of artistic work,
or using punch cards to automate photography dark room processes [450, p. 17-
19, 28]. Zuse seemed to relish the benefits technology of writing entailed, and
became agitated when they were suppressed. In college, he switched majors
two times in upset over drafting classes, stating that they “had shattered my il-
lusions. The creative spirit was left little freedom in the manner of presentation;
everything was standardized, everything was decided: the line thickness, man-
ner of dimensioning, even the positioning of dimension figures” [450, p. 15].

While living in Hinterstein, he continued practicing art by engraving scenes
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Figure 5.1: Excerpted notations of German logicians Hilbert/Ackermann and
Frege, whose works Zuse studied. Below, a handwritten excerpt from Zuse’s
1945 Plankalkiil notebook, showcasing the Zeilenverschiebung, or ‘line shift’ no-
tation [448]. From original texts [198, 147, 449].

into wood blocks.

In creating the Plankalkiil, Zuse drew from his artistic disposition and pas-
sionate interest in formal logic. Of the former, he never appeared to question
coding as involving drawn lines and written notation. Of the latter, he dreamt
of the universe as “a giant computing machine” and became obsessed with vi-
sions of a “mechanical brain,” what today we would call general artificial in-
telligence. This analytic brand of philosophy he likely inherited from German
logicians whose works he studied closely, notably David Hilbert, Wilhelm Ack-
ermann, and Gottlob Frege [450, p. 44-6,83,105]. Acknowledging the limits
of numeric computation, he designed his ‘calculus” around propositional and

predicate logic in order to solve chess problems [241].

Frege’s work deserves some comment here. European mathematicians at
this time preferred the aesthetics of linear sequences, and, if they were aware
of Frege’s work, frowned upon his two-dimensional notation (Figure 5.1). For
instance, historian Florian Cajori called it “repulsive” [72] and logician Ernst

Schroder “ridiculed” it as Japanese [279], hinting at xenophobic underpinnings
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behind some aesthetic judgements. But Zuse did not seem deterred. What today
would be considered a single “line” of code is expressed across three rows as a
matter of routine: the first row commonly including variables, the second de-
noting subscripts, and the third types [356]. Zuse remarks on the ease of “draw-
ing a line” across multiple rows of characters to connect indices and liberally
adopted notation® from mathematics and formal logic [450, p. 219]. Later schol-
ars, in reflecting on the Plankalkiil, commented that the notation was “clumsy,”
“unorthodox,” and puzzling [44, 356], reflecting a similar aesthetic valuation as

that held against Frege.

From a technical standpoint, Zuse’s Plankalkiil contained what would be
considered “standard features” in approaches over a decade later and embodied
a functional programming style twenty-five years before similar developments
occurred in the Anglocentric community [151, 44]. When John Backus gave a
Turing Award Lecture on functional style in 1977, he lamented the entrench-
ment of the imperative paradigm he helped create, calling numeric languages
“conventional” and arguing that they had to be “liberated” from a “fixation”
on the von Neumann computer [32, p.616]. Ironically, Zuse had built a simi-
lar functional style into his language around the same time von Neumann was
handwriting the First Report on the EDVAC [415] which came to define what a
“von Neumann computer” is. Zuse wrote of the times, “as a German it would

have been difficult to gain the necessary attention at discussions dominated by

Americans” [450, p. 128].7

6Notation included the square root ./, power ", times X, infinity oo, dot -, delta A, Greek
letters o, ¢, 7, & logic notation included A and V, open arrow =, and overline ¢ as negation
[356]. These last four are likely from Hilbert/ Ackermann [198].

"While Zuse’s work was only published almost two decades later, Rutishauser, Bchm, and
the British and French governments appeared aware of it [450, 60, 364].
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5.3.2 The ENIAC Vision

A similar vision of computer programming as involving written and drawn
coding emerged around the same time in the United States on the ENIAC
project, although for different reasons. The ENIAC project is of course well-
trodden territory in the history of computing, considered a landmark for the
electronic stored-program [182, 7, 258]. The women of the project, for decades
dismissed as “operators,” gained belated recognition [43]. This section focuses
on the cultural influences behind the written practices of the project’s vision of
high-level coding, formally published in the 1947 Planning and Coding Reports by
Herman Goldstine & John von Neumann (hereafter GvN) with the aid of Adele
Goldstine and Arthur Burks [164, 163]. These reports were the first to publicly
formalize computer programming as a methodology and popularized the term

“programming” [181].

The ENIAC computer was built and run in the Moore School of Electrical En-
gineering at the University of Pennsylvania between 1943-55. In the early stages
of development, ENIAC programs were entirely represented as a sequence of
machine operations (“machine code” or, in their terminology, order codes), then
painstakingly converted to switch flips, plug-board arrangements, and punch
cards by women who physically programmed the machines [182]. Deciphering
meaning from sequences of orders was extremely difficult. Von Neumann had
worked out sorting algorithms in detail, and so had intimate knowledge of the
challenges facing the translation task. The first merge sort algorithm he wrote by
hand [414] which was common; his handwritten reports often had to be typed
up by others [341, p. 6]. To cope with the growing complexity of machine-level

coding, GvN developed a notation of box-and-arrow diagrams they called “flow
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Figure 5.2: (a) Section of ENIAC accumulator block diagram abstracting an elec-
tronic circuit, Arthur Burks, Aug. 1947; (b) Section of flow diagram hand-drawn
by Adele Goldstine, Dec. 1947. Rewritten from originals [70, 162].

diagrams.” In the report, GvN state that “coding begins with the drawing of the
flow diagrams.” Such was the “dynamic or macroscopic stage of coding” [164,
p- 20]. Although later work in software would characterize drawing diagrams
as purely documentation, extraneous to the practice of coding and “drawn af-
ter, not before, writing” programs [65, p. 194], coding in the ENIAC vision was
tirstly inscribing by disciplined hand. In later stages of “static coding,” equa-
tions in boxes were converted into machine code and substituted for numbers.
The four stages of preparation reflected the division of labour established in the

data processing industry decades earlier [340].

The written culture of the Moore School’s electrical engineers was central
to how GvN conceived of this practice (Figure 5.2). GvN originally used the
engineering term “block diagram” in an early draft of the Planning and Coding
reports [341]. Block diagram had been terminology used in electrical engineer-
ing for at least a decade prior [285, 54] and similar diagrams were drawn by

hydrodynamic engineers and in industrial manufacturing [133, p. 326]. Block
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diagrams were commonplace in the Moore School, as may be seen in the ini-
tial proposal for the ENIAC machine itself in spring 1943 [7, p. 90] and a later
paper by Burks [70]. The notation gave an abstract picture of a circuit or sys-
tem. Rather than including all the fine details in one picture, the block diagram
would “block” out sections with labelled boxes, to be filled in later with more
detailed figures. Flow diagrams did similarly, except mathematical operations
would be written inside the boxes. The similarities between notations go be-
yond from the mere use of blocks and connecting lines, however, and include
+ and - beside conditional blocks (taken from polarity in electrical schemat-
ics), directional arrows, and semi-circles to ‘hop” over visually intersecting lines
[182]. When the flow diagrams were later in use, “the interaction of mathemati-
cians and computer operators, among others, created a pidgin version” of the

notation as it met the realities faced by implementation [341, p. 88].

Yet other factors appeared to contribute to GvN’s choice of notation. GvN
were familiar with formal logic and abstract mathematics, so they arguably had
the technical ability to approximate Zuse’s vision. However, several factors
worked against this possibility. First, their institutional directive was to calcu-
late equations, not solve logic conjectures. Second, von Neumann by this time
had grown disillusioned with formal logic [7] and the ENIAC programmers
were unfamiliar with it [202]. Third, the ENIAC administrators had to coordi-
nate between a large staff and a rigid, secretive organizational hierarchy [7, 133].
It is thus likely that GvN believed that choosing a representation Moore School
members were familiar with was superior to introducing a more radical de-
parture in notation. The remarkable historical work of Priestley [341] unearths

similar reasoning in a first draft of the Planning and Coding reports:
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“[W]e have acquired a conviction that this programming is best ac-
complished with the help of some graphical representation of the
problem. We have attempted... to standardize upon a graphical no-
tation... in the hope that [it] would be sufficiently explicit to make
quite clear to a relatively unskilled operator the general outline of
the procedure. We further hope that from such a block-diagram the
operator will be able with ease to carry out a complete coding of a

problem.” (p. 59)

Note here the assumption that the “unskilled operator” —the women —could
easily follow a notation rooted in the culture of electrical engineering. This was
not true at the start of the project. Unlike members of the Moore School, the six
ENIAC programmers (formerly human computers and mathematicians) had no
training in electrical engineering. Upon arrival, they were merely handed block
diagrams and asked to study them.® Jennings Bartik recounts, “I had never
read a block diagram in my life. Betty [Snyder] hadn’t either, and we assumed
it was read from left to right like a book... I am still amazed at how little help,
instruction, or supervision we had” [43, p. 75, 80]. This suggests that Bartik &
Snyder applied their existing cultural knowledge to the new material, making

sense of the situation as best they could.

Flow diagramming later spread largely due to von Neumann'’s celebrated
status [7, 285], rather than any concerted effort by a group or individual. Yet
in the 1950s, Saul Gorn of the Moore-affiliated Ballistics Research Lab [7, 302]

would make explicit the move to universalize the method. Gorn founded a re-

8 After extensive archival work, Haigh et al. conclude that programmers’ later block and flow
diagramming methods “were based on work done long before they were hired,” which corrects
some prior accounts [182, p. 95].
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search programme to find a “Universal Code” where “the flow chart would be
the code” to be translated later into a representation suitable for any underly-
ing machine [222, p. 20]. This argument influenced the later ALGOL interna-
tional commission, a (largely failed, but highly influential) North American and
European effort to standardize a universal notation to define algorithms [396].
Ultimately, flow diagramming would have a powerful influence on program-
ming and software engineering for decades to come, becoming the basis for the

“visual” paradigm of coding [62, 285] —a point to which I will return.

5.3.3 The Typewritten Vision and the Serialization of Program-

ming Notation

From 1950 onward, visions of typing (non-numeric) symbols to program
emerged, beginning with assembly code [241, 222]. Prior historical work on
writing and programming often begins with this era (e.g., see [410, 302, 9]). Un-
like the relative isolation of the prior two visions, by this time a computing
community began to form [7], making it more difficult to trace influences.” Both
Swiss mathematician Heinz Rutishauser and Italian student Corraldo B6hm en-
visioned use of a keyboard years before the more well-known MIT WHIRL-
WIND and IBM FORTRAN projects [364, 60]. Here I touch on the work of Bohm,
at MIT and at IBM.

At a high level, and more rigidly than the prior two visions, typewritten ap-

proaches were fabricated through a “dialectic of resistance and accomodation”

9For example, from 1948-9 Swiss mathematicians Eduard Stiefel and Heinz Rutishauser vis-
ited von Neumann, returned to Europe and met Zuse, his Z4 and Plankalkiil —effectively bridg-
ing the isolation between visions. In 1952, they helped develop the Swiss computer ERMETH
[299].
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Figure 5.3: Examples of translations from mathematical notation to what FOR-
TRAN designers anticipated could be typed on an IBM keypunch (1954). Notice
the handwritten x symbols and lowercase letters: by 1956, these became aster-
isks and uppercase letters [34, 35]. Rewritten from original [36].

between humans and machines [332, p. 22]. In this dialectic, machines resisted
cultural practices which had developed along different material constraints. In
turn, inventors accommodated the resistance through workarounds or modi-
tications. The degree of accommodation depended on what specific machines
inventors had on-hand, whether they actually implemented their vision, and
the flexibility of the organization (if any) they operated under. A strong com-
monality between the inventors of typewritten visions was how they designed

for mathematical users.

Examples abound of the resulting accommodations. In early 1953 at MIT
Project WHIRLWIND [144], Laning & Zierler took a Flexowriter teleprinter (a
combined manual keypunch and punch-card controlled printer whose design
had passed through IBM) and began development of an “interpretive program”
that they optimistically describe as being able to “accept algebraic equations...
At IBM, FORTRAN designers had less flexibility to alter machines to suit their
needs. John Backus, who founded the effort, was a college-educated mathemati-

cian hired to calculate Fourier series; long hours and difficulties of using ma-
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chine code motivated him to “make it a little easier” [61]. He submitted a pro-
posal to IBM management to lead a team to expand on this idea [33]. Operating
in relative obscurity due to political tensions between Thomas Watson Jr. and
Sr., the FORTRAN team had to work within the constraints of IBM's ecosystem
of standardized calculating machines built for business, aircraft, and govern-
ment markets. They made do with IBM keypunch limitations by, for instance,
using parentheses to denote super- and sub-scripts, adopting * and ** for mul-
tiplication x and exponentiation, and enforcing all uppercase letters. Though
these changes may be seen as concessions, they may also be seen as standards
enforcing an economy of notation rather than idiosyncrasy.'"’Yet for typewrit-
ten visions, the material form of the machines enforced constraints that went
beyond mere symbol swapping. The linearity and limited size of punch cards
and the left-to-right, top-to-bottom norm of Anglo- and European societies en-
forced a notation that involved a sequential series of horizontal rows of char-
acters, where the number of characters was limited by punch card size. Semi-
sequential notations like X_, confounded serial input (i.e. it is unclear whether
nori = 1came first), and thus had to be serialized e.g. SUM(J, 1,N, ...) [37,
p- 10]. Backus & Herrick’s IBM Speedcoding paper in 1954 describes the chal-
lenges facing the translation task between “rich” mathematical notation into

“fairly involved” typed expansions:

“Obviously the programmer would like to write... ‘X + Y’ instead
of: ‘"CLEAR AND ADD 100'... To go a step further he would like
to write X g;; - bj instead of the fairly involved set of instructions

corresponding to this expression.” [36, p. 112]

OWhile Backus claimed he knew little about the ENIAC [369], he drew flow diagrams in
1951-2 which quite closely resemble Goldstine & von Neumann’s notation [30].
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Figure 5.4: Jottings from John Backus, written on a note while at the Arling-
ton Hotel in Binghamton, NY, depicting translations between mathematics (bot-
tom row) and what can be typed on an IBM keypunch (top two rows), likely in
preparation for a talk. Note the inconsistency in notation for definitions sumA
and sumB: dots and exponentials could not be typed. Photo of original [31].

Unlike before, here ‘writing” is no longer assumed the domain of the hand-
written; instead, primacy is granted to the digitizing, standardized interfaces
one grapples with, even when they are not there. Through this transition from
writing to ‘writing” (what can be typed), the serialization of notation enforced
by typewriters and punch cards enabled an easy alliance with the metaphor
of ‘language,” a metaphor that even computing historians “forget... has its own
history” [302]. In the Zuse and ENIAC visions, ‘language’ did not appear in any
major way: Zuse preferred calculus and the term appears in GvN'’s reports only
once in reference to machine code [164]. By contrast, FORTRAN papers describe
the notation as a language rather than as code or psuedo-code, announcing that
this approach should “virtually eliminate coding” [37, p. 2]. Around this time,
Grace Hopper and the popular media also played a large role in spreading the
metaphor [302]. Typewritten visions of programming, rather than the Zuse and

ENIAC visions, “[asked] what was possible to implement rather than what was
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possible to write” [241, p. 15]. But the vision of typing code, despite its sug-
gestion, still did not fully attach ‘writing” to “typing.” Following the division of
labour in data processing at Remington Rand and IBM, among others, women
were employed as keypunch typists on the UNIVAC (e.g., [352]) or in institu-
tions that ran FORTRAN [243]. Statements were handwritten or typed onto pa-
per slips called coding sheets and handed off to typists for punching [34]. It was
not until punch cards were phased out in the electromechanical teleprinter era
that typing “directly” into the machine displaced the need to handwrite code
[143].

5.4 Discussion

These case studies of the origins of programming notation reveal several in-
sights about the earliest history of HCI. First, ‘code,” even in the current sense,
was foremost handwritten and drawn before it was typed. The materiality of
writing afforded alternative representations more closely associated with ‘nota-
tion” than language. Second, the design of notations and practices for program-
ming originally extended and adapted prior cultural activity. These adoptions
included, but went beyond the simple use of natural language for keywords.
Methods designed to suit one community’s culture, such as flow diagramming
at the Moore School adapted from the practices of its electrical engineers, spread
and were widely adopted with little reflection on their situatedness. Two of
these methods, ENIAC and FORTRAN, thereafter delineated the dominant cul-
ture against which later approaches were measured and justified [396, 410].
Other methods, such as Zuse’s Plankalkiil, remained ignored for cultural and

historical reasons. Third and most importantly, programming notations and
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their use are —and always were —social and material sites of intercultural con-
flict, compromise, and innovation. Especially for those marginalized from male,
Anglocentric norms, programming did not just mean punching cards, flipping
switches, planning or typing code, but was (and is) often “a problem of map-
ping from one culture to another” [109, p. 138], a recurrent site of translation
work, cultural tensions and learning (see also [174, 14]). Beyond the translation
work of social collaborations ‘around” programming systems [318], however, I
argue that translating between representations is a fundamental quality of the

practice of writing code, and is not always the result of technical limitations.

Still, some readers may cling to the feeling that the shift-key keyboard was
inevitable and typing code is actually the ‘best” method (similar arguments to
Brooks [65] and those who tried to explain the failure of Engelbart’s keyset [41,
p- 217-8]). Indeed, like all standards in HCI [217], the metaphor of language and
English keyboard interface did prove generative, such as inspiring approaches
like Hopper’s COBOL [9] and enabling global traffic in code [174]. And it is
also true that technical limitations hampered early alternatives such as GRAIL’s
light pen coding [130], which Alan Kay called the most “intimate” interface he
had ever experienced, but which suffered from a heavy stylus and low refresh
rates [232]. But cases like Zuse’s Plankalkiil should give us pause, raising seri-
ous questions about how the generalizing of some early, highly situated designs
First, alternative approaches to programming are often framed and justified for
publication as ‘educational’ (to inculcate newcomers into the old regime) or for
mere ‘end-users’ —i.e., people who are not, in the end, ‘experts.” The impli-
cation is, of course, that the typewritten is the domain of the expert, and the
‘visual” (or anything else) is for “newbies” [404]. If we are to change, we must

be willing to challenge the practices and values of experts (as, for instance, the

144



notation design work of Bob Coecke and collaborators have in quantum physics
[91]). Second, and as I expand upon below, the way we speak about program-
ming and measure programming knowledge centres the typewritten —from the
ACM classifier of this paper (“History of Programming Languages”), to the or-
ganizational and theoretical focus on single languages, to gate-keeping exams
like the AP Computer Science A [59], to the kinds of questions asked by HCI
researchers and neuroscientists [326], whose experiments seek to influence ped-
agogy, evaluation, and design. For instance, in August 2019, one of the creators
of a ‘language-independent’ coding assessment apologized for their claims of
independence and claimed that “we as a research community haven’t thought
deeply enough yet about the interaction between programming languages and
cognition” [178]. Following situated theories of cognition, we must learn to see
programming systems as cultural tools that are embedded in particular social
activity. Keeping this broad point in mind, I now connect my work to other
scholars and draw further insights this framing of HCI’s early history might

provide to the current field.

5.4.1 Framing the Early History of HCI as Situated Knowledge

and “Making Do”

On the one hand, many progenitors of writing code were in a relatively privi-
leged position in their respective societies, with many having the time, educa-
tion, and resources to invent a new practice, even if some were marginalized
by their contemporaries. On the other hand —and unlike later “hackers” moti-

vated by revolution, liberation, or democratization [12] -many inventors were
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motivated by the need to simplify the everyday difficulties of handling error-
prone data processing machines, systems which had existed in a similar form
for decades. These inventors were “making do” [14] with their particular sit-
uation and on-hand materials to make incremental improvements to their in-
teractions with computers. Keyboard interfaces were appropriated not out of a
suite of alternatives or by some leap of imagination, but because they were liter-
ally lying around, ready to be repurposed —just like the other written practices I

mention.

This situated, contingent perspective on knowledge construction connects
with standpoint theory and third paradigm HCI [193, 386, 123]. Drawing from
Donna Haraway’s situated knowledges [192], standpoint theory argues that
scientific or technological visions often present themselves as objective truth
—in the parlance of programming, masking themselves as universal or general-
purpose —but are in fact “coming from particular points of view and generated
through particular mechanisms” [193]. For example, rather than seeing FOR-
TRAN as the first ‘general-purpose,” compiled notation, this perspective would
argue that FORTRAN was specific to a domain, in exactly the same way as, say,
Max/Msp [1] is a programming environment for musicians. Similarly, rather
than seeing the rise and fall of flow diagrams as reflecting the failure of osten-
sibly ‘visual” thinking [285, 315, 62], this perspective instead would argue that
flow diagrams were ill-suited to the wide range of different contexts in which
they travelled. It was not the ‘visual’ that was flawed —such a blanket statement
reflects what Dourish & Mainwaring call a “colonial impulse” [123] —but the
early computing culture’s habit of universalizing and marginalizing, coupled
with the constraints of machines and infrastructure. This same habit of general-

izing “[o]ne historical particularity... into a timeless and spaceless universality”
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[417] drove the entrenchment of the imperative (i.e. FORTRAN) paradigm.

5.4.2 The Naturalization of the Textual/Visual Dichotomy

My analysis also builds on the broader historical marginalization of handwork
as something outside of programming [358]. Zuse and ENIAC project members
imagined coding as involving written and drawn forms, connecting to their dis-
positions and practices as artists, mathematicians, and engineers. Later, how-
ever, coding became imagined as foremost typewritten, and programming no-
tations became described as ‘languages’ belonging to either ‘textual” or “visual’
paradigms [62]. Zuse’s zig-zagged, row-crossing line challenges the very dis-
tinction between the ‘textual” and “visual,” revealing it as a fabrication tied to
many factors: the early dominance of the keyboard, the metaphor of language,
and the serialization enforced by early machines’ processes. For instance, a pa-
per in 1995 recounts arguments against visual languages which claimed that
they are “not equally acceptable for all” and rationalized the position with a
myth about right-left brain hemispheres [315]."' Over a decade earlier in a
Turing Award talk, Kenneth Iverson justified a typewritten approach by claim-
ing that mathematical notation “lacks universality” and the typewritten is in-
stead “universal (general-purpose)” [216, p. 340] —indeed a stark value shift
from early inventors’ deference to mathematical notation.'” Ingold argues that

this constructed boundary between the textual and the drawn “hinges upon

n cogniton and neuroscience, a growing number of studies suggest that processing of osten-
sibly formal (symbolic) notations utilizes visuo-spatial, nonlinguistic parts of the brain [247, 11].

12Theorists might raise questions here about computational universality and Turing com-
pleteness. Although not my focus, I ask theorists to notice how notions of completeness are
upheld through translation work, e.g. to Turing machines or lambda calculus, encodings for
numbers, etc. One might also keep in mind that, as Felleisen notes, proving completeness does
little for insightful PL design [139].
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a dichotomy between technology and art that has become deeply entrenched
within the modern constitution” but that “dates back no more than three hun-
dred years” and has its genesis in the rise of industrial capitalism, division of

labour, and routinization [214, p. 127].

To disrupt the textual/visual fabrication in future work, we might consider
the translation work of even the most technical people. Two burgeoning fields
with this property are machine learning and quantum computing. Quantum
computing practitioners communicate via a variety of diagrams and notation,
yet when ‘writing code’ for a quantum computer, APIs require users to translate
these representations into a FORTRAN-like sequence of calls [27]. While this
typewritten standard allows easy inter-operation with other code and infras-
tructure, it also perpetuates a value-laden idea that the ‘visual’ is, in the words
of one user, for those in “kindergarten” [27, p. 7], echoing those who ridiculed
Frege’s notation. Such statements, I argue, should not be taken at face value in
deference to the ‘experts’ or user-centred design. Instead, we should pay atten-
tion to how our interfaces have naturalized and centred typewritten notations,
precluding the possibility that alternatives offer improvements over the type-
written (e.g., diagrams for unruly tensor indices [91, p. 10]). I shall explore a
quantum programming system that mixes the “textual” and the “visual,” the

typed and the drawn, in Chapter 6.

5.4.3 Embracing Heterogeneity in Programming Practice

So far, I have mainly been concerned with questions of computing culture and

history, rather than speaking more directly to the subfield of programming (usu-
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ally appended with languages and abbrev. as PL). Today, many programming
communities continue a tendency to be biased towards a single approach —
towards a single language or a one-size-fits-all vision —rather than viewing pro-
gramming as a practice involving interactions between a plurality of represen-
tations, practices, infrastructure, people, and (possibly contradictory) perspec-
tives. This tendency is embedded in the way programming is taught, where
content often focuses on learning a language or paradigm, and avoids other
learning about how to contend with infrastructures setup to support program-
ming, or communication between people, software, and indeed other notations
[259, 318, 190]. Said another way, PL researchers’ continued attention to single
languages, boxed-in categories, and traditional eschewing of HCI methods and
factors [389] resists efforts to conceptualize and design programming systems

as interminglings of practices and representations.

As I have suggested above, future work in programming system design can
build on the lessons of the past by embracing, rather than avoiding, heterogene-
ity in programming practice (e.g., drawing diagrams in Jupyter notebooks that
are the code). In part, such efforts may benefit from paying a deeper attention
to the “translation work” users perform when writing code and how new no-
tations and practices extend existing culture (whether to support that existing
culture, or to design new practices that reflectively reject it). Suchman’s con-
cepts of “partial translations” and “artful integrations” are important resources
here: that “in place of the vision of a single technology that subsumes all oth-
ers (the workstation, the ultimate multifunction machine), [designers] assume
the continued existence of hybrid systems composed of heterogeneous devices”
[386, p. 99]. As Lindtner et al. argue, those that seek to alter the status quo

might also draw from feminist concepts of “walking alongside” (roughly, toler-
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ance and respect without comprehension) and “parasitic resistance” — “an en-
tity that is dependent on a host yet pursues independent goals, including goals
that go against the interests of the host” [262] —indeed familiar concepts to in-
tercultural competence education [186], infrastructure studies of organizational
change [381], and the tension of learning within a dominant culture articulated

by Lisa Delpit in Other Peoples” Children [116].

Finally, I return to the anecdote where we began: DynamicLand’s program-
ming ecosystem and rhetoric of liberation. Although the keyboard and screen
reform as an “obligatory passage point” [248], an alternative, optimistic reading
considers the project as a parasitic resistance grafted onto the status quo that
it will eventually consume. Indeed, multi-domain approaches to programming
are increasingly gaining acceptance in coding communities, reflected in the con-
fluence of paradigms supported by Python and JavaScript, in approaches like
React and Darklang, and also in PL theory, expanding on an earlier body of
work on foreign function interfaces [5, 275]. In particular, the metaphor of
language is now extended to “multilingual,” [178] “polyglot” [190], or “multi-
language worlds” [5]. While these approaches remain largely beholden to a
typewritten, English status quo, they do represent a shift towards the embrace
of the pidgin and creole, the hybrid, towards a kind of epistemological inclu-
sivity. A prominent example is the typewritten, Lisp-based Racket, framed
(perhaps strategically) as an educational language. Its manifesto declares: “A
proper approach [to programming] uses the language of the domain to state
the problem and articulate solution processes... [S]ystems will necessarily con-
sist of interconnected components in several different languages” [140, p. 114].
Though Racket too tends towards a totalizing project (“there must be no need to

step outside” [140]), its approach is rare in the field of programming languages
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and represents a promising turn towards the intercultural.

5.5 Conclusion

“The future... is that which breaks absolutely with constituted nor-

mality and can only be proclaimed, presented, as a sort of monstros-

3 4

1ty.
—Jacques Derrida [117]

Is it possible that the phrase “to write code” will not immediately imply typ-
ing in the future? Although some in programming and HCI continue to centre
typewritten approaches and deploy universalist language, a historical perspec-
tive suggests that notations and practices of programming are likely much more
situated than we typically imagine. Those in HCI and CS education should keep
in mind how programming notations are cultural tools that are products of in-
tercultural tensions and compromise, and not neutral descriptors of algorithms
or systems. In particular, work in programming and software engineering dis-
ciplines today often carry with them an epistemology constructed around the
typewriter. With advancements in pen-based computing and machine learn-
ing, if handwritten coding becomes possible, this paper argues that we in HCI
should not be so quick to reify notations developed under different material
constraints (e.g., handwriting ALGOL [256]) or indeed to oppose an intermin-

gling of approaches.

The development of new programming systems will involve not just appro-
priation of the past, but conscious reflection on —and sometimes rejection of —its

practices, notation, and discourse, of how they have come to condition our bod-
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ies and imaginations. The earliest history of electronic computer programming
revealed disparagement of other ways of doing and being that diverted from
Western European norms, such as sequential, left-to-right symbols, valuing ab-
straction (or obfuscation) over anything geometric. A close inspection of the
record reveals that “‘why’ one notation or practice was chosen over another is

more a cultural question than a purely technical one.
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CHAPTER 6
DESTABILIZING CULTURE IN PROGRAMMING: THE CASE OF
NOTATIONAL PROGRAMMING

“Language is... ‘an essentially heterogeneous reality.” There is no
mother tongue, only a power takeover by a dominant language
within a political multiplicity. Language stabilizes around a parish,
a bishopric, a capital... It evolves by subterranean stems and flows,
along river valleys or train tracks; it spreads like a patch of oil.”

—Deleuze & Guattari [114, p. 7]

For the first half of this thesis I was concerned with social interactions; that is,
interactions of humans around or through computer programming, particularly
in educational settings. Yet, as the prior chapter explored, one cannot divorce
the material from the social: they must be understood together, co-producing
one another [219]. Seeing programming through a cultural lens must therefore
inevitably bring into question the tools through which we program, the com-
monplace practices that we imagine when we hear the phrase “to write code”
versus those which escape us —and why. Accordingly, while historical and STS
analyses can be illuminating, we should not linger on analysis alone: we must

build; we must prod; we must seek to change practices, not just discuss them.

As the final step of this dissertation, therefore, I developed a prototype sys-
tem that attempts to disrupt the “textual/visual dichotomy” spoken about in
the previous chapter. It bridges the “typewritten” and “handwritten” worlds
through a new paradigm of programming that I call notational programming. Part
of my endeavor is a kind of critical or speculative design: producing a prototype

in order to probe peoples’ existing assumptions and values around “writing
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code.” These cultural assumptions are broached precisely when they come into
contact with a radically different infrastructure, one that assumes and supports
freehand drawing as central to expert programming practice. The adoption of
notational programming, therefore, does not just entail the development of new
user interfaces or improved recognition of existing notations like flow charts,
but an active reconfiguration of cultural practices, representations, and values

that have historically arisen around programming.!

To explore notational programming, I designed an extension to Jupyter note-
books, Notate, that provides the ability to open drawing canvases within lines of
code, allowing functions to accept canvas objects natively as arguments. The ar-
chitecture also passes these objects a reference to the local scope, enabling type-
written variables to be referred to in the handwritten context and vice-versa. I
call this interaction implicit cross-context references, extending prior work on bi-
modal programming by further blurring territories between ‘input” and ‘output’

[196].

To test a notational programming interface and implicit cross-context refer-
ences in a concrete domain, I chose quantum computing (QC). This choice was
strategic: programmers for QC, even when typing code, regularly translate be-
tween circuit diagrams and text [167]. An exploratory paper by Ashktorab et
al. noted the potential for pen-based computing in QC spaces [27], but no such
systems exist so far. I developed a toy notation, Qaw, that augments quantum

circuit notation with abstraction features, such as custom gate definition, bun-

'The usability study portion of this work was conducted with the help of Anthony DeArmas,
a student who took my HCI course in summer 2020. The section describing the general notion
of notational programming was written with Michael Roberts and Shrutarshi Basu, who are PL
theorists in, or have graduated from, the PhD program in Cornell CS. Tapan Parikh, my advisor,
contributed throughout to editing the piece and posed suggestions for the study design. The
majority of work in this chapter was published at ACM UIST 2022.

154



dled wires, and recursion. I implemented an interpreter for a subset of Qaw
using deep learning and classical computer vision techniques. Note that the im-
petus for my system is not to push the boundaries of quantum programming
or to claim the interface is “better” for quantum programmers, but rather to

explore the design space of notational programming in a very concrete domain.

To explore the efficacy of the Notate and Qaw prototypes, I then ran a study
(with the help of a senior undergraduate student in CS, Anthony DeArmas)
with 12 programmers who were familiar with Python and computational note-
books but novices to quantum programming. Participants were given six cir-
cuits of increasing complexity and tasked with programming them into the ma-
chine. Results show that almost all participants found the concept of implicit
cross-context references intuitive; however, feedback suggests further improve-
ments can be made to debugging infrastructure, interface design, and recogni-
tion rates. To validate the approach, I also compared Notate and Qaw to a typi-
cal typewritten workflow for quantum programming using the IBM Qiskit APL
Results show that, for Python programmers, Qaw was comparable to Qiskit in
terms of performance time, but suggest that further research is needed to un-

derstand the relative advantages of each approach.

To the best of my knowledge, this system is the first to explore a handwrit-
ten, diagrammatic paradigm for quantum computer programming (following
the suggestion of sketch-based interfaces made in Ashktorab et al. [27]). The
rest of this chapter is organized as follows: the front half covers related work
(Section 2), a general description of a notational programming system (Section
3), and a case study with designing Qaw notation for quantum circuits (Section

4). The back half covers the evaluation of Notate and a subset of Qaw: usability
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Figure 6.1: Circuit equalities from the advent of computing to quantum comput-
ing. Left: A circuit equality written by von Neumann in First Draft of a Report
on the EDVAC, 1945 [415]. Right: a circuit equality from a quantum computing
text.

study design (Section 5), findings (6), and comparison with a typewritten API
(7). Finally, the discussion (8) serves to reflect on my design process, rationale,

and comparison with graphical user interfaces (GUISs).

6.1 Related Work

In this section I summarize some prior work in programming and HCI and
drawing-based interfaces related to this work. Interfaces for quantum computer

programming will be covered in Section 6.4.

6.1.1 Programming Systems and HCI

A rich tradition in HCI focuses on developing novel interfaces for program-
ming. One focus has been on systems for educational or novice users to make
entry-level CS more accessible. These include block-based GUI environments,
tangible programming with physical objects, or manipulatives in virtual re-

ality (e.g., [425, 423, 421, 444]). More recently, a growing community of re-

156



searchers explore intersections between the fields of computer programming
and human-computer interaction, or PL+HCI. Some examples of such work
include enabling computers to complete unfinished programs [173, 308], con-
structively critiquing the design of popular PLs [443, 90], adapting usability
methods for introducing new features to existing languages [89], understanding
task-switching between languages [191], and using machine learning or crowd-

sourcing to support code generation [408, 368, 289].

Some programming environments seek to explicitly or implicitly blend “vi-
sual” and “textual” representations. Max/Msp and various game engines such
as Unity and Godot, for instance, foreground flow diagrams as their main
programming interface but retain the ability to customize blocks with textual
(typewritten) code in languages such as JavaScript and Lua. Rarely, however,
are visuals interspersed within typewritten code [62]. One contemporary ex-
ception is the computational notebook paradigm popularized by the iPython
notebook platform, which has received major attention by HCI researchers
[360, 83, 195, 419, 226, 436, 420, 235]. Work in this area includes “bidirectional”
coding, where “visual” and “textual” modalities are mixed in the form of click-
and-drag GUISs, and edits to one affect the other [196, 436]. Other work explores
the integration of GUIs inside computational notebooks for visualizing and nav-
igating data [235, 307, 15]. An early precursor to this type of work is the “het-
erogenous visual languages” vision of Erwig & Meyer [136], which is perhaps

closest to the vision I will lay out here, albeit without the focus on pen input.
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6.1.2 Pen-based interfaces for programming

Pen-based computing has a long history of intersection with programming in-
terfaces, starting from Iverson’s SketchPad and continuing to sketch recogni-
tion of diagrams and pen gestures [17, 246, 111, 390, 130]. Some relevant recent
examples are the preliminary demo of Inkbase (2021, SPLASH), the extensive
notational programming work of Saquib (2020) in mathematics education, Mi-
crosoft’s Sketch2Code, and AirBnB’s sketch interface [x,x] (as well as my own
undergraduate thesis on “notes with function”; unpublished manuscript, 2013).
The dream of pen-based programming environments extend at least as far back
to Rand Corp.’s GRAIL interface, which made the flow-diagram coding of von
Neumann et al. interactive and inspired elements of Alan Kay’s FLEX system
[232]. Within HCI, sketching interfaces have been applied to support Ul de-
signers, such as in James Landay & coauthors” SILK and DENIM systems in
the mid-90s to early 00s [245, 246, 260], as well as work by Ellen Yi-Luen Do,
Mark Gross, Tracy Hammond and Randall Davis [172, 187, 221, 111]. Some of
this work has sought to make sketching more interactive, offering tight sketch-
interpretation feedback loops where shape gestures are successively recognized
and/or beautified [130, 370]. Other systems convert handwritten diagrams into
code within unidirectional workflows from early-stage sketches to textual code
[282, 387]. One such example is Li et al.’s AlgoSketch, which supported recogni-
tion of code-like lines of freehand mathematics notation [256]. But while these
and other systems have converted handwritten notation into computer pro-
grams [256, 124], to the best of my knowledge, no drawing interface has been
embedded within a typewritten programming environment, while allowing for

implicit communication between handwritten notation and textual code.
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Figure 6.2: The main interface to the Notate system, embedded in a Jupyter
notebook: (1) a canvas torn open inside a line of code in a cell; (2) fullscreen
mode, accessed by touching or clicking on the canvas, with (3) a rudimentary
toolbar.

6.2 What is Notational Programming?

Here I define the key features, principles, and rationale behind the notational
programming paradigm. The Notate interface, depicting drawing canvases in-
side typewritten code, is shown in Figure 6.2. Users may draw on the canvas
(1), resize it by dragging the corner, or click/touch it to open up fullscreen view
(2), which presents a rudimentary toolbar (3). Canvases in a notebook cell move
in response to text edits in the editor (e.g., newlines) and can be deleted, copied,
and pasted alongside textual code, analogous to the “interactive visual syntax”
GUIs of Andersen et al. [15]. The interface also allows users to paste in images
from outside the notebook to instantiate a new canvas. Figure 6.3 depicts an
example of copying a quantum circuit from Google Image search that is inter-

preted into an IBM Qiskit QuantumCircuit object.

To illustrate a simple workflow, consider the “notational program” in Fig-
ure 6.4. Here, a user has specified two vectors b and c as 2-tuples in Python
code. Below these declarations, the user has drawn a diagram of the kind found

in an introductory geometry class, depicting these vectors, writing an angle
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Figure 6.3: A user copies an image of a quantum circuit from search results (1)
and pastes it directly into a function call (2). The user runs the cell and views
output (3), verifying that the interpretation is correct.

1 b= (1, 2.4)

geo| o )
3
6 print(a)
0.7536

Figure 6.4: In a code cell, a user draws a diagram to calculate the value of an-
gle a between two 2d vectors, b and ¢, defined as tuples in Python code. The
Interpreter geo takes a Canvas and (implicitly) a reference to the local scope.
Interpreting the diagram, it associates label a with an angle, realizes that a is not
set, and declares it as a new variable in the host scope.
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symbol between them, and labelling the angle a. To declare how their notation
should be interpreted, they wrap their drawing canvas in a call to geo (). The
geo interpreter then segments and recognizes portions of the drawing, matches
labeled parts of the diagrams to information already in the current Python con-
text, solves for the values of undefined variables (here, a), and binds them in the

host scope.

This example illustrates what I call implicit cross-context references: the type-
written b and ¢ becomes b and ¢, resp., while the handwritten a implicitly de-
clares a Python variable a in the typewritten context. Note that the meaning of
a diagram need not be literal: c in fact points in a different direction than what

is drawn.

6.2.1 Definition and principles

Now that we have built some intuition, I provide a general definition. A nota-
tional programming system consists of three components: a host environment, a
pen-based interface, and a communication protocol by which they interact. By host
environment, I refer to a typewritten or drag-n-drop IDE with a corresponding
“host language.” Here, the Jupyter notebook interface and Python are the host

environment. By notational programming interface, I mean a system where:

1. users can interact with drawing canvases as first-class pieces of “code”
embedded inside the host environment (copy and paste, drop in, delete,
etc.)

2. users can draw on or otherwise edit the canvases using drawing features,

with a stylus, touch, mouse, etc.
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3. the system facilitates a communication protocol between the typewritten

and handwritten contexts

A communication protocol specifies how the host environment “sees” image
canvases embedded inside of it: what underlying types or objects they repre-
sent. In my implementation, the Python environment reads the canvas as an
image object (a NumPy array) extended with some additional metadata, such
as strokes, pressure data and timestamps. Importantly, the metadata includes a
snapshot of the local scope captured at the point of execution (when the line of
code with the canvas is read by the Python kernel). For brevity, I shall call this

image-plus-metadata a Canvas object.

At the most basic level, one could use the notational programming system
to set a variable directly equal to an image, or otherwise use it in a function
call, without having to first save image data to a file.> The Canvas can, more-
over, be something users create or edit using standard drawing tools. The in-
tention of a notational programming system, however, is not simply the ease
of importing images, but on handwritten notation as a first-class element when
defining computation. To allow this, a notational programming system facili-
tates cross-context communication between labels in a handwritten notation (a
handwritten system of marks, signs, graphics, or characters with a syntax and
semantics, such as math, music, state diagrams, etc) with typewritten labels
(whether variable names, functions, classes, etc) in the host scope. By cross-
context, I mean that not only can handwritten notation reference typewritten
variables, but later typewritten notation can reference handwritten variables. I

use “variables” broadly to mean any named object in the host scope: functions,

2This is similar to drag-n-drop functionality in Mathematica: https://reference.
wolfram.com/language/howto/GetAnImageIntoTheWolframSystem.html
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gquery = geo| a )

b

¢ = query.ask(a=4, b=3)
print(c)

5

Figure 6.5: In a code cell, a user draws a diagram without prespecifying values
for sides a, b and c. The diagram returns a queryable object. By setting some
parameters (here, the ask method), the object returns the value of the remaining
unspecified length. Note that this example is meant to express the possibilities
afforded by notational programming, not argue the quality of this particular
example’s API design.

classes, etc.

Practically, in order to interpret a notation in a particular execution context,
one must write a notation Interpreter. This step is akin to defining a typed literal
macro [307], albeit with a handwritten notation recognizer instead of a textual

lexer. The process of interpretation can be enumerated into steps, roughly:

1. recognition: computer vision process visually recognizes the notation,
syntactically; often this requires a segmentation step where symbols are
extracted from “the rest” of the drawing and associated with parts of it

2. semantic parser: the recognized syntactic object is parsed in the nota-
tion’s semantics (potentially throwing errors or warnings, say for type
mismatches or ambiguities)

3. communication policy: informally, a set of read /write rules between the

host scope and the interpreter that specifies what variable names may be
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“read” into the notational context, how they should be translated,® and
what typewritten variables may be declared or changed during the inter-
pretation that are carried into the host scope. More formally, a read policy
would specify both the domain of valid names and the expected types of

the referenced variables.

Similar to macros for a typewritten notation [306], over the course of its exe-

cution, an Interpreter may:

1. Read certain variables (as in names) in the host scope
2. Modity existing variables in the host scope
3. Declare new variables in the host scope and bind them

4. Return a value (like a normal function)

An Interpreter that implicitly modifies or reads the local scope acts differ-
ently than a typical function, because (at least for Python) it may violate the

scoping rules of the host language. For example, the normal Python code:

> def foo(img) :
X = recognize_symbol (img)
. foo (Image.load ("handwritten_3.png"))

5 print (x)

outputs 0 to the console, because outer variable x cannot be set within foo

(without the global keyword). However, the code:

3For instance, we may define a policy whereby Greek letters like 8 declared in the notational
context are accessible in later Python code by referencing the name theta.
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X =20

<)

interpret( X

print(x)

for some interpreter interpret () would print 3 (assuming, of course, the
recognition step was successful). Here we violate Python’s scoping rules so that
the Interpreter may act similarly to a line of typewritten code —which has access,

implicitly, to variables defined in the local/host scope.

Finally, an object returned by an Interpreter may not be a direct value, but
require certain parameters in order to specify its value (as in, a lambda func-
tion). Consider a triangle with labels a, b, and ¢ that are not defined in the host
environment (Figure 6.5). The interpreter geo returns an object “with holes”
—that is, the meaning is indeterminate until it receives values for (some of) the
undefined parameters, akin to a lambda function. For instance, one might use
a method obj.set (a=4) to set a to length 4. Here, the object would returns
another object where a=4. This object would still need b or ¢ to be defined, to
infer the last side. The return object will typically need to do some unification

and constraint solving in order to fill in these fields.

6.3 Case study: The Qaw Quantum Circuit Notation

Having described the notational programming paradigm in the previous sec-
tion, I now narrow the scope to explore one potential application domain: quan-
tum programming. This section reviews my motivations, design methodology,

and specification for the Qaw (quantum-draw) notation and provides two ex-
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Notation | Term Use Representation in
Qaw
wire, qubit | Stands for a single qubit | (same)
S or  “qubit | (quantum-bit). Read
line” from left to right.
Al quantum Stands for n qubit lines | —+—— (without the
register (or | bundled together. Of- | n)
qubit bun- | ten used in more informal
dle) definitions of circuits.
gL | sate Stands for an operation | (same, but only capi-
(here, H) on the qubit(s) | tal letters accepted)
input into it (line(s) at-
tached to left of box).
— controlled X- | Stands for a controlled-X | (same)
—b— gate operation on two qubits.
| 0> ket Initializes the qubit line | (same, but only 0, 1,
to its right (here, to state | +, or - currently sup-
0). Sometimes a complex | ported)
state like |y) is written.
_[71_ | measure Measures a qubit, col- | —| (line with a stop-
N lapsing th tum stat )
psing the quantum state | per
to a binary value.
assignment | Defines a subcircuit of the | With Notate, accom-
operation or | given name (here, C). The | plished by setting
~—o— | subcircuit subcircuit can be used as | a typewritten let-
(for i~ | Jofinition a gate in later circuits. ter A-C equal to a
stance) drawing of the circuit
wrapped in a gcr ()
call.
ellipses Informal.  The ellipses | Accomplished  via
operation stands for repeating a | recursive definition,
#z+ | (used infor- | pattern across n qubit | which uses both
(for i | mally) lines. Pattern is inferred | assignment and
stance) from surrounding con- | slash-wire notation
text. Sometimes paired | for bundling qubits.
with parametrized gates. | See ~ Appendix A
section A.0.8 for
example.

Table 6.1: Some common elements of notation that practitioners use to write
quantum circuits. For a full description of notation included in Qaw, see Ap-
pendix A. For an intro to quantum computing, see the Qiskit textbook [210].
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amples. To aid readers less familiar with quantum computing (QC), Table 6.1
lists some common notation for quantum circuits, along with names, uses, and
corresponding notation in Qaw. A full accounting of the notation included in
Qaw appears in Appendix A. For an introduction to quantum computing, see

the Qiskit textbook [210].

Quantum circuits are used to describe algorithms run on quantum comput-
ers. The general workflow of a researcher developing a new quantum algorithm

is split into roughly two steps:

1. Pencil and paper. A programmer plans their algorithm by calculating in
quantum mechanics and linear algebra notation, and draws a quantum

circuit.

2. Typing code and debugging. The programmer translates their circuit into a
typewritten programming language/API, outputs a diagram representa-
tion and inspects it, runs the code and observes the outcome, and edits

and debugs.

Current software for quantum programming primarily supports step 2 of
this process [27]. Typewritten approaches range from APIs in existing lan-
guages (e.g., Python for IBM Qiskit and Google Cirq [166, 210]) to entirely new
languages (e.g., Microsoft Q# [391]). Researchers have also developed drag-n-
drop graphical user interfaces, aiming to make quantum computing easier for
novices (e.g., IBM Composer and Quirk [27, 149]). I was motivated to choose
quantum computing for my case study after noticing how circuit diagrams re-
main a central feature of QC APIs and often appear side-to-side with typewrit-

ten code in many resources.*

“In Google Cirq, for instance, a circuit diagram is output as ASCII text to the terminal [166];
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6.3.1 Notation Design Process

One of the first steps in designing notational programming interface involves
designing a notation for a particular domain. To produce the Qaw notation, I
conducted a survey of quantum programming resources. I surveyed circuits
as they appear in papers on quantum algorithms, online tutorials and wikis,
sketches in blog posts and class notes, example code, and textbooks. Given that
one of the limitations of contemporary GUIs for QC is their lack of abstraction
tools, I particularly paid attention to how authors handle abstraction in their

circuit diagrams. I found several elements for denoting abstraction:

¢ Slashes bundle an abstract number of qubit lines, usually with a parameter

n written above the slash
* Sub-circuits are declared using an assignment operator =

* Ellipses (...) are used to imply a repeating pattern within or across qubit

and bit lines (e.g., last row of Table 6.1)

* Parameters appear either as arguments in parentheses or exponentials to

a gate name

* A less common but powerful operation is recursive circuit definition, for

instance in Rennela & Staton [353, p. 18]

I aimed to incorporate many of these prior conventions while designing the
Qaw notation with an eye towards simplicity and reducing the effort required
to hand-write elements. For instance, in Qaw one does not need to write a size

parameter n for wire bundles above a slash, except in cases where one wishes

in IBM Qiskit, a diagram is drawn to a Jupyter plot [210]; Quipper outputs diagrams [167] and
QuECT embeds ASCII quantum circuits into existing PLs [79].
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to use the parameter elsewhere, needs to distinguish it from another, or wishes
to implicitly define its size by inheriting from a typewritten variable. Nor do
they need to explicitly write the tensor product in a gate (e.g., the ® in H®"),
since the type of gate may be inferred from the type of the input. My choices
were also governed by recognition accuracy —e.g., I opted not to include ellipses
(as an option for suggesting repeated segments of circuits) since ellipses may be
more prone to recognition error and ambiguity. Instead, the power of ellipses is

obtained through recursive circuit definition.

While designing this notation, I paper prototyped how one would apply the
notation to implement real quantum algorithms by handwriting solutions to tu-
torials in IBM Qiskit and Microsoft Q#, alongside the Python and Q# solutions
to these tasks. I applied an iterative design process to amend the notation, re-
ducing effort in favor of brevity where possible (e.g., the choice to depict the
measure symbol as a capped output line, —1), or extending it (in the case of
measures that then control later qubit gates, used in a quantum teleportation
circuit). Nevertheless, just as programming languages like JavaScript are never
“final,” so too do I expect notations to evolve and change as time goes on and

more communities come into contact with the technology [225].

6.3.2 Examples: Superdense Coding & Grover’s Algorithm

To illustrate how Qaw works in practice, I wrote a small “notational program”
for superdense coding (Figure 6.6), a common example quantum algorithm
[325, 210]. Here, a user has specified bits a and b in typewritten code. They

then drew a diagram that uses these variables to control gates X and Z, which
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a, b=1,0
(:P (? @
Q = qer( oy H XHZ H—I)
lo) = g I

a, b 1, 0

circ QuantumCircuit(2)

circ.h(0)

circ.cx(0, 1)

if a 1: circ.x(0)

if b 1: circ.z(0)
circ.cx(0, 1)
circ.h(0)
circ.measure_all()

O 0 N O R W =

Figure 6.6: A common circuit for superdense coding, handwritten in Qaw (top)
with Qiskit code for comparison. Notable features: 1) circles mark classical con-
trol bits a and b 2) kets initialize qubit lines, 3) stoppered outputs represent
‘measure’ operations. Here a, b variables are implicitly referenced in the hand-
written context as classical bits that control gates.

essentially functions as an if statement —if a, then apply gate X; otherwise, let
the qubit pass through this part untouched. Measure notation —capped ends
of output wires —indicate to measure both qubits. A later “run” method (not
pictured) would then run the circuit Q on a quantum computer, observing the
output. The equivalent Python code using Qiskit is depicted at the bottom of

the figure.

For a more complex example, consider the general circuit for Grover’s Al-
gorithm, as presented in the Qiskit textbook (Figure 6.7, top). This “abstract”
circuit uses a common, albeit informal abstraction, the slashed-wire or “wire
bundle” notation, to represent n inputs succinctly. The circuit may be coded in

the current iteration of the Qaw notation using a similar slash (Fig 6.7, bottom),
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Figure 6.7: Top: a way to write Grover’s algorithm, from the Qiskit textbook,
depicting the slash notation used in many quantum computing resources [210].
Bottom: the above circuit “coded” in Notate with a version of the Qaw notation,
where D is diffusion circuit and U is the oracle (to be defined). The D circuit is a
solution to Task 3 in my user study.

here where the diffusion subcircuit D is also written using slash abstractions. To
generate the same abstract circuit in Qiskit and Python requires using loops or

recursion across n inputs.

6.3.3 Implementation

I implemented an interpreter gcr for a subset of the Qaw notation, us-
ing a combination of deep learning and classical sketch recognition tech-
niques. The gcr function takes a Canvas and outputs either (1) an
IBM Qiskit QuantumCircuit object or (b) an abstract wrapper over a
Qiskit QuantumCircuit, called AbstractQuantumCircuit, which needs
parameters (e.g., n for number of input wires) to generate a “concrete”

QuantumCircuit. The abstraction is necessary as Qiskit does not support
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Figure 6.8: The process of interpreting a handwritten quantum circuit in my
system. (Drawing is P14’s solution to Task 1.)

specifying circuits with abstract elements. Including Notate, the full system
took about a year for me to build, including (re)training of the ML model and
an iterative process to improve the heuristic part of the algorithm. The architec-

ture of the recognition system is illustrated in Figure 6.8.

6.4 Usability Study

Using this implementation, I proceeded to run a usability test of the Notate
interface with a subset of the Qaw notation. My goal was to investigate how
novices would use and perceive a notational programming interface in order
to solve a series of QC tasks. I wondered especially about conceptual under-
standings of my core concept, issues around mode-switching between typing
and drawing, and values participants might hold around different types of cod-
ing practices. Here I describe the study design, materials, and participants. I
also validated the approach by comparing completion of the same tasks with a

typewritten API, which I discuss in Section 7.
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Task Design and Scaffolding

Since the Notate system targeted translations between diagrams and typewrit-
ten code, I settled on examining the “translation work” [21] users perform when
programming quantum circuits into the machine. I designed a progression of
tasks focused on a subset of the Qaw notation, designed to (1) introduce novices
to quantum circuits and (2) focus on the implicit cross-context references con-
cept, where custom gates, defined as typewritten Python variables with capital
letters A-C, may be referred to in handwritten diagrams within the same scope.
Much like a traditional API, the Qaw notation includes an array of complex
components with nuances that could not be fully introduced within a 2 hour
time-frame. Choosing to recognize only a subset also increases accuracy and

reduces development costs.

I designed the tasks to lead up to asking participants to program a recursive
circuit structurally similar to the Quantum Fourier Transform (QFT), omitting
the parametrization and final multi-swap gate. Along the way, I chose some
circuits specifically for their relationship to real quantum algorithms: Task 1is a
Bell State; while Task 3 is the n-ary diffusion subcircuit of Grover’s Algorithm.
Other circuits were chosen for pragmatic or scaffolding reasons: Task 2 is a four-
line circuit that I expected would require more time drawing than typing; Task
4 introduces the idea of defining subcircuits; and Task 5 introduces recursive
definition. Task 6 tests all concepts that users had been taught across Tasks 1-5
(gates, controlled gates, slash-wires, subcircuits, and recursive definition). My
designs of Task 5 and 6 were meant to provide harder programming problems

than could be solved by the copying of an example diagram.

173



Participants

We recruited 12 participants (18-27 years old, median 20; 6 male; 6 female) who
all self-reported prior experience in Python and using computational notebooks,
but no prior knowledge of quantum computer programming.® These partici-
pants had been randomly selected from a full pool of 24 participants (the re-
mainder selected into the typewritten condition, discussed in Section 7). Given
that quantum programming is rather niche, I anticipated that we could not re-
cruit enough in-lab participants with prior expertise; even if we could, expert
participants may be biased towards the quantum programming interface they
are familiar with [89, 425]. Of those who participated, eleven were undergradu-
ates, and one was a PhD student. Nine majored in CS, with others from Biology,

Engineering, and Information Science fields.

Experiment Design and Procedure

After written consent, a member of the research team introduced participants to
a Microsoft Surface tablet running the Jupyter notebook environment. All par-
ticipants used the same Surface PC. Participants completed a tutorial, followed
by six tasks of increasing complexity with an optional 5 min. break after the
third task. Following the tasks, participants were asked to complete a Likert
post-survey and a semi-structured interview. The post-survey asked for Likert
ratings from 1 (strongly disagree) to 5 (strongly agree) for five questions, listed
in Table 6.2. Each session was capped at 2 hours and participants were compen-

sated $30 in cash for their time.

The screening criteria was: “Participants must have prior experience in Python (taken a class,
workshop, etc.), have at least cursory/passing knowledge of Jupyter notebooks, have no prior knowledge
of quantum computing, and be comfortable drawing by hand.”
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Data collection, Setup and Materials

We asked to record the screen and microphone for the duration the study. A
data logger captured user interactions with the Jupyter notebook, such as code
cell edits, executions, tracebacks and toggling fullscreen mode. In addition, a
researcher typed timestamped observational notes of the participant’s interac-
tions, with guidance especially to focus on anything not captured by the screen

—e.g. shifting their posture, jotting on scratch paper, or moving the PC.

Participants were given a blank piece of scratch paper and a reference sheet.
The sheet included circuit elements they would encounter during the tasks, and
was made to mimic API documentation, since participants could not search on-
line. Participants were told they may ask the researcher for a hint if they get
stuck; and researchers were allowed to provide a hint if participants seemed to
be stuck (e.g., repeating themselves due to confusions around an error). For the
Notate condition, since my goal was not to test the accuracy of the recognizer,
in the event of a recognition error on a correct (final) solution, the experimenter

would let participants know their solution was correct and let them move on.

6.5 Findings

All Notate participants were able to complete the first five tasks, while nine
were able to complete the last task within the allotted time (exceptions: P4, P6,
P19). As shown in Table 6.2, post-survey results indicate non-normal distribu-
tions and high variances, indicating that there was a difference in how users

adjusted to the interface. I affinity diagrammed the qualitative data and identi-
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Q# Question Median Mean Stdev. Shapiro-Wilk (W, p)

Q1 The interface was 4.0 3.58 1.1645 0.8596, p=0.0483**
easy to use.

Q2 The interface was en- 4.0 3.50 1.0000 0.8226, p=0.0171**
joyable.

Q3 When I made a mis- 3.0 3.17 1.4668 0.8384, p=0.0265**

take/error, I found it
easy to correct.

Q4 I felt confident using 4.0 3.75 1.1382  0.8512, p=0.0380**
the interface.

Q5 When I completed 3.5 3.17 1.4035 0.9056, p=0.1874
the tasks, I felt like a
programmer.

Table 6.2: Post-survey Likert results for our Notate user study. Shapiro-Wilk
tests indicate non-normal distributions at p<0.05 for all questions except Q5;
hence, I report medians. Variances are high, consistent with programming stud-
ies [89].

tied three major clusters of findings: conceptual understandings, error handling

and debugging, and general usage patterns with the Surface device and Notate

interface.

6.5.1 Conceptual (mis)understandings

Notate participant’s conceptual (mis)understandings could be broken down
into three kinds: first, understandings about the core concept of implicit com-
munication between typewritten and handwritten notations; second, under-
standing the Qaw notation and applying it successfully; and third, maintaining
conceptual boundaries between what they considered “coding” versus “draw-

4

ing.
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Understanding communication between typewritten and handwritten con-

texts

By far, participants had few, if any, difficulties understanding the core inter-
action of referencing typewritten variables within handwritten notation. They
used it effectively to reference smaller circuits, typewritten as Python variables
such as A, inside larger circuits, by handwriting A (Figure 6.9). Notate partici-
pants would rarely bring up this interaction until pressed with a specific ques-

tion by the interviewer. P19 recounts:

I didn’t have any trouble with it. For the most part, it was able to recognize
my handwriting and the variable that I typed.... was the same variable that
I wrote down. [...] I guess it’s the same intuition [as normal programming
practice]. It's just instead of typing out a variable that you’re referencing

later, you're just writing it.

Three participants, to my surprise, even thought that in-line drawing can-
vases were an existing feature of Jupyter notebooks which they were simply
unaware of (P4, P5, P11; e.g. “Maybe this is like a feature in Jupyter notebooks?”).
These participants were otherwise familiar with Jupyter and had used it before.

Said P5:

I wasn’t sure if [the canvas] was a built-in library, or some library that
already existed? Or if that’s part of it? [Interviewer: Part of the Jupyter in-

terface?] Yeah, that produces an image and then qcr() interprets the image.

A few participants described an initial hesitation followed by quickly be-

coming accustomed (P17: “When I first read about it, it felt very foreign... [but] that
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idea seemed less foreign and sort of familiar once I did a couple of practices”). For two
participants, one of the main conceptual difficultiues stemmed from recursive
definition. These users either did not notice the typewritten C (due to small font)
in the Task 5 example diagram, or assumed the C gate had a different function.
Said P11, who was observed scrolling quickly through the Task 5 text: “Maybe
the C is just like, ‘lambda function abstracted away.” [Like C] just means recursion.
And I didn’t realize that the C was actually on the outside.” Examples of recursive

definition are shown in Figure 6.9.

Understanding the Qaw notation and abstractions

Common conceptual errors of syntax across users are pictured in Figure 6.10. A
few users also tried to slash multiple wires at a time, a feature that was unsup-
ported by the implementation since it can lead to semantic ambiguities. Some
of these confusions may merely be learning hiccups, but they may also suggest
further extensions to the notation to support the varied ways people convey in-
formation (e.g., the third example in Fig. 6.10). When encountering these errors,
the debugger would either print a warning, or raise an Exception with an error
message. Common error messages included semantic “input / output size mis-
match” errors when gates had different numbers of inputs than outputs (e.g.,
forgetting to draw the output wires to a gate). For Tasks 5 and 6, some par-
ticipants also encountered “maximum recursion depth exceeded” errors that

indicated their recursive circuit definition never terminated.

I anticipated that many participants would struggle on Tasks 5 and 6 due to
the presence of recursion (a concept possibly rarely used in most participant’s

programming in Python), requiring a complex understanding of Qaw abstrac-
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tions. This, indeed, was what happened for some participants: for Task 5, both
the median time and the standard deviation was approx. 12 minutes; for Task 6,
median time was 27 minutes, st. dev 15.5 mins (for a full accounting, see Ta-
ble 6.3). Closer examination of Task 5 reveals that two participants were able
to complete the task in a little over 1 minute, and one about 1.5 min; while the
longest two took about 30 min and longer. Post-interview data indicates a pos-
sible reason for the faster participants: three reported that they felt comfortable
with recursion and had taken (or were currently taking) a functional program-
ming class. P21, for instance, a CS major, completed Task 5 in 5min 16s. When
asked if anything in her background might have contributed towards her abil-
ity to solve the tasks, she said “I understand recursion and know how to apply it.”
Her conceptual issues seemed less to do with recursion than with nuances of

the notation, such as where slashes could go.

“This doesn’t feel like programming at all”: Negotiating boundaries between

“coding” and “drawing”

“Coding begins with the drawing of the flow diagrams...”
—-Goldstine & von Neumann, 1947 [164, p. 20]

One of my goals in conducting this work was to further explore how pro-
grammers negotiate boundaries between what practices constitute “program-
ming” or “coding” and which do not, paralleling the historic separation be-
tween the “textual” and the “visual” and the dominance of the term “language”
deriving from early adoption of the typewriter [21]. When presented with a se-
ries of tasks which effectively forefronts handwritten drawings in programming

practice, | wondered whether it would destabilize or challenge participant’s no-
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# Specify circuit(s) here...

A = qgcr(

C = gcr( f\ )

# Print circuit diagram to console. For example:
C.draw(num_inputs=5, output='mpl')

qo — H -

q1 —

qz — H — ——

s = H —O0———— 00—

Figure 6.9: P5’s solution to Task 6, generating a pattern similar to the the body of
the quantum fourier transform. Circuits A and C are defined recursively using
Qaw slash notation and implicit cross-context references.

tions of programming.

Some Notate participants said that notational programming and especially
recursive notation was unlike anything they had never encountered before (P11,
a TA for an upper-level CS class: “I don'’t really think this compares to any other
kind of programming that I've done in the past, like... It's completely different”) or
struggled to compare it to their prior experiences. Participants would often
erect boundaries between their experience using the drawing interface and what
they considered “coding.” Said P21, when asked to compare her prior coding

experience to the study:

180



This is definitely less coding; it was more drawing. For me coding is like,

writing out... 1 guess, like this bottom line [points to C.draw()], like actually

typing it up?

Participants appeared to associate the keyboard or “typing” with “coding” —
often (somewhat ironically) resorting to the verb “writing” to describe how cod-
ing differed from “drawing” —in order to exclude drawing from the category of
coding (P19: “It [the study] is not what I was expecting... I thought I would have to
write code”; P7: “When I'm programming, 1 don’t have to think about my handwrit-
ing... I just have to think about, you know, writing stuff”). For them, “writing code”

was a practice inexorably attached to the keyboard.

Yet, cracks in participants’ conceptual boundary-making could also occur.
P7 began by claiming “this doesn’t feel like programming at all,” but as he tried
to defend his point, ended up questioning how one would define programming,
even asking the interviewer how they would define it. This provides evidence
that, above and beyond technical concerns, notational programming interfaces
may call into question participants” ideas and values around what “program-
ming” and “writing” code entails, especially as they sit with the concept for

longer periods of time.

6.5.2 Error handling and debugging

In Notate, unlike a typical coding environment, errors may not be syntactic/se-

mantic —errors caused by the user -but “recognition errors,” faults of the Al
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Figure 6.10: Three common “syntax errors” made by participants: (1) missing
an output wire to a gate; (2) slashing an output wire of a control gate; (3) trying
to use a single dot to represent a multi-Controlled Z gate in Task 3. In future
iterations, we can imagine supporting some of these styles.

computer vision algorithm.® Common to usability studies of notation recogni-
tion systems [304], during the studies we observed high variability in recogni-
tion rates for some Notate participants versus others. The post-survey responses
provide some support for this claim: the question with the lowest score and
highest variance is “When I made a mistake/error, I found it easy to correct”
(Table 6.2). And indeed, those who struggled with the recognizer earlier or for
longer durations may have rated the interface poorer. For instance, P14, who
generally wrote in a very sketchy style, grew frustrated with the recognizer and
gave the interface all 1’s in her post-survey, the lowest score across participants.
By contrast, P21, who rarely encountered a recognition error, rated the interface
all 4’s. In addition, comparisons with other pen-based interfaces may also be
involved: for instance, one participant, in the post-interview, talked about their
dislike of the Microsoft Surface, over the iPad & Apple Pencil interface that they

were familiar with.

6Technically, a “recognition error” can also occur in typewritten coding if the syntax/gram-
mar parser has a bug.
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Conflations between semantic and recognition errors

In practice, the additional uncertainty of recognition errors meant that con-
ceptual misunderstandings of the Qaw notation —where the user is learning,
through trial and error, how to apply the syntax —were often confounded by

recognition errors or issues parsing (or trusting) error messages.

If it had trouble, the recognition part of the interpreter would throw a plot of
what the Al saw (Figure 6.11); but in practice, this could not catch errors when
the Al thought it had parsed the drawing correctly, but the semantic parser then
threw an error from the misrecognized circuit. This led to situations where par-
ticipants interpreted recognition errors as semantic or syntax errors and vice-
versa. For instance, while completing task 3, P7 struggled with the recognizer.
They at first interpreted a recognition error as a semantic one, then tried a bunch
more drawings before returning to a drawing semantically equivalent to their
original solution —only this time, the recognizer worked, outputting the inter-

preted circuit:

Oh, come on, I did that the first time. [Frustrated, he looks at the output.
It doesn’t match the solution.] Is that circuit... Damnit. [pause] Oh, that’s
supposed to happen. Hey yo, no, I don’t want to write that stuff [realizing

he will have to draw a second line of gates].

Here, P7 is frustrated in realizing that what they thought was a semantic
error was really the fault of the Al This causes them to momentarily doubt
the current, correct output —blaming the recognizer rather than their specifica-
tion -before realizing that the Al was correct this time (“oh, that’s supposed to

happen”), and reattributing blame to themselves (“no, I don't want to write that
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stuff”). Other participants would remark that a major similarity between cod-
ing in Python and in Notate was that error messages in Python were not always
helpful. For instance, P3 mentions this similarity, along with the new source of

“blame”:

[In reqular coding], the error you get is supposed to be helpful, and it's just
not, or [it’s] straight up wrong... But, being able to blame it on the image
processing was kind of interesting. Like, “oh, it could be an error with me,

or it could be an error with the computer.”

Consistent with other work in HCI on improvisation and repair, sometimes
these frictions were unexpectedly “productive” [227, p. 4]: for the wrong rea-
sons, recognition breakdowns could end up nudging user’s behavior in the
right way. In other words, users could read recognition errors as a sign their cir-
cuit was semantically invalid —when it in fact was —and then stare at and amend

their drawing towards the correct solution.

“It doesn’t like my handwriting”: Modifying drawings in response to errors

A common pattern, especially if recognition errors happened early on, involved
participants amending their drawing practices to suit what they perceived the
Al could understand, such as starting from freehand drawing to resorting to
the rectangle and line tools. The sooner the recognizer failed, the faster and
more extreme the amendments to their practices. P17, for instance, triggered a
recognition error (with plot) on the Tutorial, the only participant to have done
so. She then noticed the rectangle tool and began using rect and line tools for

the rest the study. At one point she writes a fast Z, then erases it and rewrites it
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Oops, I had a little trouble recognizing that. Here's what I saw:

Slasi/ n— 2

- L C

.
L Udle

300 4 F_Q_[l"ll’Gl_bit
400 B gate
T tarbet cx
500
-—HZ
600
0 200 400 600 800 1000

Figure 6.11: During Task 5, P8 encounters an error plot thrown by the Al rec-
ognizer (below the code cell). Noticing that a Z gate was mistaken for a B, P8
responds by erasing and rewriting her Z, then guessing the open corner was
also an issue (“Maybe it’s also this thing over here?”) and filling it in. She runs
the cell; it throws another error plot. The researcher present remarks on the n—2
as a conceptual misunderstanding —this notation was only used in a tutorial to
explain how a recursive definition unrolls. P8 erases it and runs the cell, leading
to the expected output (“Alright! Looks good.”).

slowly, possibly worried about the Al’s interpretation. Participants who rarely
triggered a recognition error, by contrast, almost never used the rect, line, or

circle tools in the toolbar.

6.5.3 Interactions with hardware and software

Many Notate participants would touch the screen while mode-switching be-
tween pen and keyboard. An especially popular mode of interaction was tap-
ping in-line canvases to enter fullscreen mode, and tapping the background of
fullscreen mode to close it. The Ctrl-\ shortcut to place a canvas at the mouse
cursor seemed to be successful, with some participants only hesitating on Task
1 to remember the shortcut and the term gcr () (resolving the confusion by ei-

ther using the reference sheet or looking back at the Tutorial). Strikingly, the
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study did not encounter a case where participants, after Task 1, forgot to wrap
their canvas in the gcr () function.” One issue with the Ctrl-\ shortcut was that,
likely due to the weight and size of the felt Surface keyboard, some participants
accidently pressed Ctrl-+ (plus) when trying to use it, which enlarged the size

of the browser content.

Many Notate participants preferred to use fullscreen drawing mode, with
few writing directly on the in-line canvases. One exception was P8, who resized
canvases to be almost the width of the code cell. So too would participants,
especially for Task 5 and 6, use the scratch paper extensively, sometimes to write
solutions pre-emptively on the paper before copying them onto a canvas. Their
behaviors here may have to do with worries over the software interface, such as
accidentally resizing the canvas, or hardware, such as the glass screen and how
participants perceived the fidelity of the pen. Early in the study, P11 put the
screen flat on the table, with the felt keyboard flat below it, but the keyboard got
in the way, since it was near their elbow, leading to them returning the device to
upright (stand) mode. Other participants would remark that they might have
tried a “tablet” mode, e.g. P3: “I would have been fine, every once in a while, when
I had to type like qcr() just doing that on a touch screen... because the keyboard was
almost entirely unused.” Two participants asked for a “lasso” tool, referencing
the Notability app they had used on their iPad. They wanted the lasso tool to
move around parts of their drawings or copy parts of drawings within a canvas.
Some participants mentioned having, or being familiar with, the iPad Pro and

Apple Pencil; only one mentioned prior familiarity with a Microsoft Surface.

7In the Tutorial it had been explained that canvases are read internally as images, so possibly
participants drew from their Python knowledge to understand gcr as a function taking an
image argument.
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Task Notate (X, | Qiskit (X, s) | MWU (U1, | Levene w/ | Cliff’s ¢ (ef-
s) P) med (W, p) | fect size)
Tutorial | 173.03s, 150.19s, 89.00, 0.75, 0.24 (small)
63.66s 87.66s p=0.3408 p=0.3957
Task 1 59.27s, 52.23s, 82.00, 0.43, 0.14 (negli-
25.71s 45.81s p=0.5834 p=0.5202 gible)
Task2 | 126.16s, 77.81s, 105.00, 0.51, 0.46
87.01s 62.48s p=0.0606* | p=0.4837 (medium)
Task 3 | 265.79s, 422.07s, 36.00, 0.80, -0.50
176.85s 464.89s p=0.0404** | p=0.3813 (large)
Task 4 | 200.28s, 233.71s, 43.00, 2.58, -0.40
78.84s 284.03s p=0.0998* | p=0.1225 (medium)
Task 5 | 721.54s, 323.35s, 83.00, 5.57, 0.15 (small)
722.15s 298.75s p=0.5444 p=0.0276**
Task 6 | 1619.33s, 386.58s, 125.00, 1.61, 0.74 (large)
925.31s 796.97s p=0.0024***| p=0.2181

Table 6.3: Task times (¥=median, s=st. dev) and comparison statistics (Mann-
Whitney U, Levene with median) across conditions.

(*=p<0.1 indicating a potential trend, **=p<0.05 indicating significant,
***=p<0.01 indicating highly significant)

6.6 Comparison with a Typewritten API

To assess the real-world performance of the Notate system, and to validate that
the system wasn’t significantly worse when compared to typewritten coding, I
conducted a comparison of the interface with an alternate condition where par-
ticipants had to use the IBM Qiskit API and Python to solve the same tasks. I
chose Qiskit because it is one of the most popular quantum programming APlIs.
I also use this comparison to explore various tradeoffs between the two condi-

tions regarding task types and workflows.
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6.6.1 Participants

We recruited 12 additional participants (20-26 yrs age, median 21.5; 8 male, 3
female, 1 unspecified) who had been randomly selected from the full pool of
24 participants across studies, matching a between-group design.® The study
had the same timeframe of 2 hours and compensation of $30, with Python-
equivalent tasks and materials —a reference sheet to emulate API documenta-
tion, a piece of scratch paper, and a tutorial. All task explanatory text was
altered to present the same conceptual information (as much as possible), ex-
cept in typewritten code.” Examples in tasks were presented as screenshots and
could not be copied & pasted, to retain fairness across conditions. All Qiskit par-
ticipants used the same Microsoft Surface as the Notate users except one, who
used a MacBook Pro 2013. Participants could similarly ask for hints and, if they
seemed stuck, the researcher present could provide help. I altered the name of
the Qiskit API to ‘qcirc’ to eliminate potential biases around perceptions that a

corporate entity had designed the interface.

6.6.2 Task by Task Performance

All Qiskit participants completed all tasks, although P13 requested significant
help on Task 6 from the researcher present, resulting in pair programming the
solution. Since a raw “time to task completion” metric does not factor in po-
tential variability in reading the task text, which varies across conditions, here I

estimate start time by the moment the user begins to work in the editor on the

8Eight were undergraduates, three PhD/masters students, and one unspecified; six majored
in CS, the others in Engineering and Information Science fields.

9E.g., where Task 4 in the Notate study introduces subcircuits with an example of use, the
Qiskit study presents example code to accomplish the exact same thing.
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problem —editing the code cell to add a canvas or type code. End time is marked
by the last execution of a code cell containing a correct solution, before starting

on the next task.

Shapiro-Wilk tests of normality indicate that Qiskit completion time data
is not normally distributed for all six tasks (p<0.01 for every task except four,
which is p<0.02). For the Notate task times, none of the Shapiro-Wilk tests
were significant, with only Task 2 near significance at p=0.059<0.1. For post-
survey subjective measures, a Shapiro-Wilk test reveals similar non-normality
at p<0.05 for all except one sample (Notate condition in Q5); and at p<0.01 for
all Qiskit post-survey questions. Because of these violations of normality and
the between-subjects design, I report non-parametric tests to compare condi-
tions: Mann-Whitney U to test for differences between distributions, Levine’s
test with the median (a.k.a. the Brown-Forsythe test) for differences in vari-
ances, and Cliff’s ¢ for non-parametric effect size. I report median task times
and other statistics in Table 6.3. Below, I unpack these findings with interpreta-

tions from qualitative data.

Tutorial and Task 1: No significant differences found. Medians and st devs.
are close, suggesting that pen and keyboard input is comparable for entering a

simple Bell State circuit.

Task 2: indicates a trend towards the Qiskit condition (p=.06), but does not
reach significance. I included Task 2 to test the intuitive hypothesis that larger
“concrete” circuits —that is, circuits without abstractions, with several gates and

control lines that go in exact places ~-would be easier to solve via the keyboard.

Task 3: significant in favor of Notate p=0.04<0.05, with a large effect size
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(Cliff’s 6=—0.5). Task 3 introduces a new abstraction notation, the slash-wire,
that participants have likely never seen before. The solution is also non-trivial
(Fig. 6.7, subcircuit D), and could have benefited from an extension to the no-
tation whereby a dot captures a bundled multi-controlled Z gate (Fig. 6.10, #3).
In both conditions, I did not include the multi-Controlled Z component in the
task’s tutorial explicitly, to emulate participants searching an API to solve the
task. I did, however, introduce the slash-notation (in Notate) and (in Qiskit)
remind participants of the “for i in range(n)” abstraction in Python for accom-
plishing similar looping over n inputs. The observations suggest that the multi-
Controlled Z gate in Qiskit was a major pain point in the API, yielding confusion
for participants both on where to apply it (trying to apply it within a for loop,

initially) and how to enter qubit indices as an argument.

Task 4: suggests a slight trend in favor of Notate (p=0.09), but does not reach
significance. Observations of the Qiskit condition indicate a potential pain point
in the API regarding using custom subcircuits, with some participants appear-
ing confused about the difference between output of .to_instruction ()
and subcircuit objects. In Qiskit, one had to cast their subcircuit to an instruc-
tion, then use the .append command with a list of indices as an argument;
while in Notate, one could directly use their subcircuit by drawing a letter A

within a gate of their larger circuit.

Task 5: does not reach significance. However, Levene’s test shows the two
distributions have significantly different variances at p<0.03. In 6.1.2, I noted
that the fastest three Notate users took under 1.5 minutes; the longest over 30
mins; here, the fastest Qiskit user took about 3.5 mins; while the longest took

18.5 min.
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Task 6: significant at p<0.01 in favor of Qiskit, with a large effect size (Cliff’s
6=0.71).1% The relative speed of Qiskit users on Task 6 is as hypothesized by
my choice in the task design. However, many Qiskit users were observed copy-
ing their solutions from Task 5 into Task 6, then amending inner calls, possibly
accounting for the size of the difference.!’ In comparison, Notate participants,
although they could copy canvases within a notebook, could not copy canvases

from one notebook into another.

Likert Survey: Post-survey results indicate that Qiskit participants rated the
interface as easier to use and more enjoyable compared to Notate (p<0.03; me-
dian=5 vs. 4 for both Q1 and Q2), while other metrics did not reach significance.
For “When I made a mistake/error, I found it easy to correct,” a Levene’s test
with median yields a significant (p=0.018<0.05) difference in variances, with
higher variance for Notate. The high ratings for ease-of-use are somewhat un-
surprising: after all, we had recruited participants experienced with Python and
Jupyter notebooks, and the Qiskit condition did not ask them to do much more
than use the interface they were already accustomed to. My choice of the word
“interface” in the post-survey could also have led to confusion, as the post-
interview data suggests that what some Qiskit participants were rating were
Jupyter notebooks. Participants may also be inclined to blame themselves; for
instance, P23 appeared to be struggling with Python and error messages, but in
the post-interview did not attribute his frustrations to the interface, even when

pressed.

0For the three Notate participants who could not finish Task 6, I include their times in the
analysis without edit, for they took at least 10 minutes or longer.

11p1, P23 and P24 copied the entire code cell; P15, P18 and P20 their entire recursive function;
P9 a few lines; P10, P16 flipped rapidly between browser tabs to manually copy parts, including
the base case; and P13 referenced it. Only P2 and P20 did not reference Task 5.
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6.6.3 Qualitative observations

By contrast to Notate participants’ reliance on touch and pen interactions and
frequent use of the scratch pad on harder tasks, the Qiskit participants rarely
used the scratch paper or touched the screen, and only one of them used the
stylus to scroll with the scrollbar. Their means of interaction were the fold-
out keyboard and trackpad of the Surface, akin to typical programming prac-
tice. Sometimes, a participant would be seen ready to write something on the
scratch paper (pencil up), but then would return to the keyboard. A few partic-
ipants used trackpad gestures to zoom out, such that they could see the entire
notebook without scrolling. Across all participants, Qiskit users relied heavily
on the provided example code snippets, sometimes copying example code al-
most verbatim before amending it for the task. As might be anticipated, the
types of errors Qiskit participants encountered were also fundamentally dif-
terent than Notate ones. Qiskit user errors centered around indexing and array-
out-of-bounds errors (missing an index, going over by one, etc.). Users typically
responded by revising the index argument, sometimes seemingly guessing in
multiple quick edit-run-revise cycles until the cell ran without incident or gave
the right output. By virtue of the notation, indexing errors were entirely absent

from the Notate condition.'?

Near the end of the post-interview, we asked Qiskit participants an inter-
view question regarding a hypothetical drawing interface (they were not intro-
duced to the Notate interface). Participants generally hypothesized that they

would prefer to type code instead. When asked to expand, however, it materi-

2The idea that cumbersome indexing disappears in a diagrammatic notation aligns with the
rationale of Penrose and Coecke & Kissinger, who designed index-free notations for tensors and
quantum mechanics, respectively [327, 91].
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alized that their belief stemmed from difficulties conceptualizing how drawing
could define abstract circuits (i.e. over n inputs), with many assuming a tedious
copying of the entire n-ary diagram in Task 6 (e.g., P1: “[Drawing] by hand?... I
think that that would get out of hand so quickly”). And, when pressed about how
to express abstraction visually, some Qiskit participants appeared at a loss for
words. They could not imagine how that would be done. However, as a few
participants continued talking, they appeared to grow uncertain of the solid-
ness of their boundaries between programming and drawing. P10 for instance,

without being aware of the Notate condition or ever seeing the interface, said:

[For] one of those abstract ones [circuits]... it'd have to be some like com-
bination of drawing with like, notation, or something... But once you have
that, then you're moving back into, like, the ‘code territory’... If we were
to do this completely, like in a ‘no code” way, I'd probably have to com-
pletely draw [the circuit], right? But once you start thinking about ways to
save time on that, like creating notation to define this abstractness, or the

repeatedness... Technically, it’s code, right ?13

When drawings have notation, they “move into,” almost invade, the “terri-
tory” of code [114]. Since notational programming is, by design, meant to dis-
solve the “territories” of textual, keyboard-centric IDEs and handwritten draw-
ings/notation, were such systems widely adopted, it is possible that the mate-
rial assumptions underlying the concepts of “code” and “programming” would

shift.

3During this study, the audio transcript reveals that the interviewer never mentioned the
term “notation”: the participant came up with it on their own.
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6.6.4 Limitations of evaluation

This study had numerous limitations. By far the biggest limitation is that No-
tate participants were novices, and could not conceptualize how such an inter-
face might fit into a real quantum programming workflow. Future participa-
tory design work with expert quantum programmers may enrich and amend
this design. Second, my choice to recruit only those already experienced with
Python and Jupyter notebooks may have biased them towards those familiar
interfaces [89, 169]. Had I chosen participants with no knowledge of Python
and Jupyter, it is an open question how the interfaces would compare.'* Third,
and related to the first two limitations, it is unclear how results might change
were users exposed to the interface for a longer duration of time (as the novelty
of the interface and learning the notation make one-to-one comparisons with
existing practice difficult). I also acknowledge that my comparison is limited to
a typewritten API which might be improved in the future (say, to make using
custom subcircuits more intuitive), and comparisons to other typewritten APIs
may yield different results. Finally, because of the task design, Notate users did
not encounter workflows that involved equal ratios of handwritten and type-
written coding. In practice, I envision more equal cooperation between input
modalities. Future studies might explore tasks where participants learn both a

typewritten API and a corresponding handwritten notation.

4There may also be no best design for a comparative study, however. According to Lieber-
man, comparative studies are only preferable when “changing the variable doesn’t change the
paradigm of interaction... when the alternatives being tested are radically different from each
other, you've got a problem” [257]. Greenberg & Buxton echoed Lieberman’s concerns, arguing
that running comparative usability studies may (sometimes) be “harmful” for evaluating inter-
faces that challenge entrenched practices or norms [169]. They outline situations where either
the interface is on the cusp of feasibility, but still too prone to errors; or where participants hold
strong biases towards existing practices.
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6.7 Discussion

Overall, my findings show that Notate users found the core interaction of im-
plicit cross-context references intuitive. Moreover, all Notate users were able
to apply Qaw abstractions to solve tasks 3-5, and most were able to solve the
tinal task, involving double recursive definitions and at least one subcircuit,
within the allotted time. In addition, although Notate participants were intro-
duced to an entirely new notation, the slash-wire, in Task 3 —compared to Qiskit
participants who used familiar for loops —they were able to complete the task
significantly faster. This is all the more surprising since, usually, a portion of
Notate participants’ task time was spent wrangling recognition errors. Com-
parison of task times for Notate vs. Qiskit conditions also provides evidence for
a longstanding contention by programming researchers studying “visual” vs.
“textual” notations: that which is “better” depends on the task at hand, how
the design of the notation affords or resists encoding a particular solution, and
the background and preferences of who is trying to apply it [168, 425]. Taken
collectively, these findings support my “heterogenous” vision of notational pro-
gramming —for designs that mix modalities, instead of demanding one for all
time [386, 136]. I now reflect on future directions, rationale behind some design

choices, and differences with GUIs.

6.7.1 Future directions and reflections on process

The qualitative findings for Notate revealed that, while participants could learn
and apply Qaw abstractions, there was much room for improvement to the in-

terface design. Recognition rates, drawing features (such as the lasso tool), task
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reference material, and especially debugging feedback could all be improved.
The infrastructure and standards around typewritten environments —linters,
syntax highlighting, debugging feedback, etc. —has evolved over decades, and
it stands to reason that handwritten programming could benefit from similar
innovations. In Notate, only recognition errors ‘threw plots’ in their tracebacks,
but UX-Al transparency principles [165] suggest that seemingly-semantic errors
should also throw plots visualizing what the Al saw. Future work might explore

best principles of building debugging toolchains for notational programming.

I also believe improvements can be made to my notation design process.
Much of my work was akin to research-through-design, viewing the design ar-
tifact as an outcome “that can transform the world from its current state to a
preferred state” [446, p. 493] —relating to how participants currently associate
“coding” with the keyboard, versus (my intention) broadening this conception
to include pen-based input. Here, the process of trying to design and imple-
ment a notational programming system may itself be a contribution, and offer
suggestions for future practice. One improvement could be, before implemen-
tation, to run a Wizard of Oz (WoZ) study to examine how participants deploy
a notation in practice, with the intent to fold their feedback into a more finalized
specification. Another, more futuristic design is to leverage “evolving Al” [438]
so that a distributed notational system would evolve its notation in response to
how users actually use it, just as a non-computational notation like Feynman
diagrams evolved as it came into contact with varied communities [225]. Relat-
edly, future work might center the communication protocol mediating the two
contexts, and develop tools and guidelines for helping design domain-specific

notations and interpreters.”® Past work on multi-domain sketch recognition by

I5For instance, although I chose an “implicit” binding protocol here ~where a subset of type-
written variable names are implicitly imported into the handwritten context and vice-versa —
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Alvarado & Davis required a (typewritten) hierarchical shape description lan-
guage to specify new domains [10]; here we might imagine combining deep

learning-based recognition with programming-by-example techniques.

One additional question was raised by the “trick” many Qiskit participants
used to solve Task 6 significantly faster than their Notate counterparts: the copy-
ing of one solution into a new notebook, followed by a short edit-run-revise cy-
cle. Future designs might support copying Canvas objects not just across note-
books, but facilitate copying only parts of the drawing, or editing a finished
drawing. Also, this raises a question of how one might design notations with

localized copy-and-paste operations in mind.

6.7.2 Rationale behind turns of phrase

My design choice to integrate a drawing interface into typewritten IDE —rather
than cordoning it off in a self-contained system —was inspired by my discussion
of my historical analysis in Chapter 5, particularly Lucy Suchman’s guidelines
to embrace heterogeneity: that “in place of the vision of a single technology that
subsumes all others... (the workstation, the ultimate multifunction machine),
[designers] assume the continued existence of hybrid systems composed of het-
erogeneous devices” [386, p. 99]. I worked to reopen a convention settled and
stabilized earlier in history, recovering a heterogeneity lost from programming’s
early moments of formation. In reality then, my proposed integration of type-
written and handwritten inputs was a strategy: a parasite that gloms onto the

existing, dominant practice and seeks to corrode its constructed purity. “Cod-

perhaps some developers may favor more “explicit” bindings, involving passing more argu-
ments to the interpreter.
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ing” originally meant a handwritten, not a typewritten practice [21], and so it
stands to reason that boundaries could again become blurred. To change the
meaning of a term, however, requires shifting the material practices that under-

lie it.

The astute reader might wonder why I used terms like “notational pro-
gramming system” throughout this piece, instead of more common phrases
like “sketch-based interfaces.” Developers of sketching interfaces typically aim
to support early-stage design processes and often take a user-centered design
approach, aiming to recognize rather than reconfigure existing practice. For
instance, Buxton defines sketching as any design process where the output is
quick, plentiful, disposable, ambiguous, and with minimal detail [71]. Support-
ing sketching is an important area, as decades of rich research can attest. How-
evert, I preferred to use terms like “notational” and “pen-based” to, in part, clar-
ify that I do not intend notational programming to support or augment early-
stage sketching; i.e., it is not a replacement for paper and pen. Rather, notating
is intended to be closer to the end product of user’s thought processes, more
like typewritten code. Said differently, it is my intent that handwritten input
requires a certain precision, just as typing on a keyboard does. That does not
mean we should dismiss poor recognition rates, but rather —taking principles

from Al research —calibrate user expectations appropriately [165].

Another key break with my approach was a focus on notation design and
the ‘reconfiguration” of user practices present in the PL community but often
avoided in the framing of sketch recognition research. Per its name, sketch
recognition research tends to proceed from a user-centered design perspec-

tive that focuses on recognizing existing notations and design practices (e.g.,
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molecular diagrams, flow charts, or Ul sketches), rather than taking a cultural-
historical approach which conceives of writing practices as produced through
a dialectic between human needs and material affordances [122, 21]. I perceive
the goal of notational programming as not only recognition, but asking how we
might reconfigure and extend existing notations —or indeed create new ones —in

dialogue with new computational powers.

6.7.3 Handwriting interfaces vs. GUIs

A recurring question some people have asked when first hearing of this sys-
tem is: “why not use a GUI?” Surely, they reason, an embedded GUI for the
case of quantum circuits is preferable to a drawing interface —less prone to am-
biguous errors, more immediate, editable, etc. And for certain purposes they
may be right.!® My design was instead meant to be partly critical, i.e. “de-
sign that asks carefully crafted questions and makes us think” [125, p. 58]: I
purposely avoided the tight feedback loops present in on-line sketch-based in-
terfaces [371], seeking to challenge participants’ norms and values around pro-
gramming (if a feedback loop isn’t required, then, technically, they could be
writing significant parts of their program on a piece of paper). My goal was not
universally faster or better products [125, p. 58], but to cause users to pause,
to provoke or question their typical “ways of doing” programming.'” From the
interviews, it seems that some participants’ understandings of coding were in-
deed broached or called into question after interacting with the system. Never-

theless, there may be practical benefits to my vision of the notational paradigm

1®For instance, I would encourage IBM integrating Qaw abstractions like the slash-wire into
their quantum circuit GUI Composer.

7Computer “coding” and “programming” are terms with a relatively recent history; their
meanings have never been pregiven, fixed or static but have evolved over time.
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that I now highlight: its shifting of front-end to back-end implementations, its

altering of the “posture” of programmers, and its fluidity.

First, a single drawing interface (and protocol for reading its contents) means
that implementers need not develop, embed, and test a new GUI widget for each
new domain. Yes, new interpreters will need to be defined, but those methods
need not unduly concern themselves with the particulars of the front-end inter-
face. Although today it can be costly and time-consuming to iterate ML models
[438], as these processes are streamlined, we can imagine future support tools
that ease the process of developing said recognizers, say with transfer learning

and few-shot examples.

Second, a GUI often —although not exclusively —assumes the familiar
mouse/trackpad and keyboard setup. The way that laptops and desktop PCs
constrain the body is often an assumed, and not reflected on, aspect of program-
ming practice. Notational programming may change the paradigm of interac-
tion towards pen-centric input, such that, hypothetically, one could be writing
significant parts of a program on an e-Ink tablet. The body (posture, move-
ments, even aspects of cognition) is constrained differently based on these se-

tups, and some of the participants even reflected on this.

Third, and unlike domain-specific GUIs, because the core data for the nota-
tional paradigm are images, they can be copy and pasted and passed around at
will, using existing, out-of-the-box infrastructure available on all operating sys-
tems. The image effectively is the program, or at least part of it. Were there an
abundance of community-built interpreters, one could copy images from white-
boards, paper, or online resources, that then load them directly into data struc-

tures within a typewritten workflow. Like Mol’s characterization of the Zim-
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babwe Bush Pump, we might say the notational programming interface aims to
be a “fluid technology,” in that an image affords “a flexibility that allows it to
travel almost anywhere” [112, p. 226]. What it sacrifices for a GUI’s “firmness,”

in Mol’s terms, it may make up for in versatility and mobility.

6.8 Conclusion

“Wasp and orchid, as heterogeneous elements, form a rhizome... a
capture of code... a becoming-wasp of the orchid and a becoming-
orchid of the wasp. Each of these becomings brings about the deter-
ritorialization of one term and the reterritorialization of the other...”

—Deleuze & Guattari [114, p. 10]

In this chapter, I introduced and evaluated a prototype notational program-
ming system embedded in notebook environment. I introduced several princi-
ples of notational programming regarding how a host environment (here, type-
written language and IDE) communicates with a pen-based interface for hand-
written notation. As a case study, I then developed an abstract notation to writ-
ing quantum circuits, Qaw, and built a deep learning-powered interpreter of
a subset of the Qaw notation. Interestingly, three Notate participants seemed
to assume the in-line canvases shipped as a standard feature of Jupyter note-
books, and nearly all had no trouble grasping the concept of referencing type-
written variables in handwritten code, suggesting that future users would find
that core interaction intuitive. Such blending between the “textual” and the
“visual” might also work towards shifting cultural values and boundary work

around what “programming” entails. However, more work is needed on the in-
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frastructure supporting notational programming —debugging tools, and designs

that manage or mitigate the mode-switching between keyboard and pen.
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Conclusion
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CHAPTER 7
THE FUTURE OF PROGRAMMING AND HCI

Today, we stand on the precipice of widespread changes to programming
practice. The advent of large language models (LLMs) in machine learning,
trained on public codebases, has made the dream of “natural language pro-
gramming,” which began with Grace Hopper’s COBOL, more feasible than ever
before. Instead of ‘writing code” directly, programmers can now prompt Als by
specifying their problem in a comment using natural language, and generate
code that solves it. Advocates of this approach promise more efficient coding;
at its most utopian, a radical alteration of programming practice. Yet as the
DynamicLand example in Chapter 5 warns us, contradictions tend to shadow
promises of radical change. From a cultural perspective, we see how LLM-
powered systems rely on and reproduce existing languages, APIs, and work-
flows. They take as input existing ways of coding and reinscribe them, some-
times verbatim [249].! We face a situation where technological infrastructures,
entwined with globalizing flows of capital, may be homogenizing cultural dif-
ference, coalescing towards global standards.? In such an environment, under-
standing programming as a cultural, rather than purely technical, practice has

never been more important.

Throughout this thesis, I explored ways ‘programming’ and ‘culture’ in-

!And with questionable legality. For instance, one Professor of CS showed that his LGPL-
licensed code is reproduced almost exactly by GitHub CoPilot without a license: “@github
copilot, with “public code’ blocked, emits large chunks of my copyrighted code, with no at-
tribution, no LGPL license. For example, the simple prompt ‘sparse matrix transpose, cs_’
produces my cs_transpose in CSparse. My code on left, github on right. Not OK.” https:
//twitter.com/DocSparse/status/1581461734665367554

Indeed, this can even be seen in the graphic design of logos for technology companies,
coalescing towards bolder, sans-serif fonts that all look similar: https://velvetshark.com/
articles/why—-do-brands—-change-their-logos—and-look—-like-everyone-else
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tertwine: the culture in programming, the programming in culture, and how
phenomena under each banner may be challenged or changed with new activ-
ities, systems, and tools. Through my work in intercultural computing educa-
tion, I explored how programming activities may serve as a site of intercultural
learning, whether between students of different backgrounds, or as tools for
reflection on cultural beliefs and assumptions ‘programmed’ into their society.
Through my work on the culture in programming, I traced how the early his-
tory of ‘writing code” enscribed such values and epistemological perspectives
into programming practice, and suggested that this dominant culture has con-
strained the reception and/or creation of other values and practices. As a practi-
cal offshoot of my historical work, I then designed and studied one speculative,
alternative vision of coding, notational programming, which imagines handwrit-

ten notation and drawing as central to expert practice.

Though I separated educational and material concerns into Parts I and II, re-
spectively, the two are deeply connected. The material practices through which
we ‘write code,” and the dominant culture that has arisen around them, form
the basis of, and determine the goals for, the education of newcomers. The goal
of programming classrooms is to learn and repeat the representations and prac-
tices of the ‘experts,” to come to value their ways of doing and seeing the world.
Incentive structures are then set up to socially and economically reward those

3

who best reproduce the existing culture.” On the one hand, experts passing

down methods to “organize and engage the world” [317, p. 2443] through pro-

SMy experiences in academic programming language (PL) communities have reflected this.
When networking in community retreats, the first question multiple people asked me was ‘who
is your advisor?” —and reacted negatively when they did not know the advisor, to the extent of
quickly leaving the conversation. In other words, in PL communities, you are expected to serve
as a conduit for your advisor, who ideally will be some kind of well-known figure (who were
themselves advised by a well-known figure, etc). This came as a shock to someone who was
used to HCI or information science conferences, where the focus on one’s advisor (implicitly, on
reproducing an advisor’s views) was less stark.
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gramming is a positive endeavor, teaching the next generation how to access
and change the powerful computing machines that fit in their backpacks and
pockets. On the other, experts may reproduce values and practices in comput-
ing which constrain or devalue other methods or types of people [407]. In my
U.S. study, the encounter between Evan and Jordan particularly underscores
how the reproduction of the existing culture in CS intersects with the perpet-
uation of racial inequity (Section 3.3.4). Evan was not overtly negative or dis-
criminatory —in fact he was polite and quiet —but rather seemed to regurgitate
common messaging in CS about the value of demonstrating technical aptitude
over any concern for social factors, at the expense of Jordan’s own enjoyment
and care for her mother’s story. In the process of wanting to demonstrate his ap-
titude to a white male authority figure (the author or the teacher), Evan seemed
to overlook the social goal of the activity, because he may have surmised from
the wider society that social factors are ‘not relevant’ to succeeding in the field

of computer science. As Turkle & Papert put it in 1990:

“Although the computer as an expressive medium supports epis-
temological pluralism, the [dominant] computer culture often does
not. Our data points to discrimination in the computer culture that
is determined not by rules that keep people out but by ways of think-
ing that make them reluctant to join in. Moreover, the existence of di-
verse styles of expert programming supports the idea that there can
be different but equal voices even where the formal has traditionally
appeared as almost definitionally supreme: in mathematics and the

sciences.” [407, p. 132; emph. added]

While pedagogy and professionalization practices in computer science can
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exhibit “ways of thinking that make [people] reluctant to join in,” aspects of
these ways of thinking are actively encoded and maintained by material ob-
jects, such as programming environments and notations, that demarcate what
practices are allowed and which require translation (“translation work”). Val-
ues that arise around dominant material practices like typing in C++ then serve
to separate out the “real hackers” from the “rest.” Thus it is not surprising to
find that students tend to express more confidence in their programming ability
when typing in a textual editor, even when they are relatively more proficient

in coding concepts when working in a graphical environment [254].

This association between (what constitutes) ‘real’ programming and typing
was reflected by Notate participants, who tended to exclude drawing from pro-
gramming practice, even though what they accomplished through handwriting
was exactly the same as typing code, and even when it was, at times, faster to
handwrite than type. Tellingly, when some participants (and later people react-
ing to the Notate work) expressed interest in the drawing interface, they often
added that they were “visual people”; by contrast, when people expressed that
typing code would be better, they could defer to a traditional belief that the key-
board and linear sequences of text are the ‘best’ way to program.? As Lieberman
put it, “People differ significantly in cognitive style that affects their reaction to
interfaces. Nothing wrong with that, but it screws up experiments. Many inter-
faces, especially new and innovative ones, are controversial. Some people like
them and some people hate them” [257]. The tendency in computer science to

want to ‘optimize” for the ‘best” interface (embodied in my historical work by

“E.g., one researcher in PL theory expressed the belief that the idea that there are “visual
people” is wrong and has been discounted by science. Since they themselves prefer to type
code, therefore, it must be best for all. In fact, cognitive styles —or the idea that people have
different aptitudes for different kinds of information —is a well-evidenced result in psychology
[316], and research suggests correlations between differences in cognitive styles and cultural
background [131].
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inventors’ early searches to find a “universal language’) is prone to prematurely

devalue other methods of programming that privilege other types of people.

What might those charting the future of programming and HCI takeaway
from this body of work? Overall, we might say that intercultural approaches to
computing are focused on ontological change: rather than supporting existing
practices myopically, without caring to question higher-level assumptions, one
seeks to challenge existing practices and values and assumptions which under-
gird them. The designs which form the latter halves of Parts I and II —cultural
algorithms pedagogy and notational programming, respectively —sought to dis-
rupt existing assumptions and practices that divide and diminish the diversity
of the world. These critical designs aimed to challenge how people saw them-
selves, others, and their societies. Going forward, then, those working at the in-
tersection of programming and HCI must be willing to move beyond user-centered
approaches to design, and (re)discover alternative philosophies that seek to chal-

lenge existing ways of being and doing.

One approach to help us reflect on (and challenge) the entrenchment of ex-
isting practices is the tradition of ontological design, developed by Winograd &
Flores in the mid-1980s [433]. Its genesis as an inter-cultural endeavor, between
scholars from the U.S. and Brazil, lends itself well to the “inter-cultural” sensi-
bility of this thesis. And, its extension by Arturo Escobar incorporates Indige-
nous perspectives on being, knowing, and relationality which often challenge
Western cultural assumptions and values [137]. Ontological design constitutes

three beliefs:

“that design is something far more pervasive and profound than is

generally recognised by designers, cultural theorists, philosophers
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or lay persons; that designing is fundamental to being human -we
design, that is to say, we deliberate, plan and scheme in ways which
prefigure our actions and makings —and in turn we are designed by
our designing and by that which we have designed (i.e., through our in-
teractions with the structural and material specificities of our envi-
ronments); that this adds up to a double movement —we design our
world, while our world acts back on us and designs us.” [429, p. 70;

emph. added]

Ontological design is therefore, for me, primarily a sensibility towards how
our world design us, how history is, as Baldwin said, “[carried] within us”, how
we “are unconsciously controlled by it in many ways,” and how “it is to history
that we owe our frames of reference, our identities, and our aspirations” [38].
Ontological designing is designing to subvert current ways of doing and being —
whether how programming education programs are constructed and conceived
(as sites for learning programming, rather than building social relationships that
challenge wider societal forces), or how “programming” is assumed to involve
a familiar keyboard and mouse setup, and exclude (or devalue) visual notations
and drawing. Like some Kenya-based students were open to change, ontologi-
cal design asks us to learn from children’s perspectives, to take ways of thinking
which may initially be seen as naive or discouraged by dominant cultures, and

build support structures which sustain them.

When we pursue ontological design, we open up the potential for change.
The comments of some participants —one in the Kenyan study, and one in the
notational programming study —point to the hopeful possibilities which can

emerge: whether the Somali girl who initially hesitated to reciprocate with her
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Sudanese partner, “because he doesn’t understand that he’s a boy”, claiming that she
has “a new friend [S25] who was my computermate and become my best friend”; or the
teaching assistant for a functional programming course who, after drawing ab-
stract circuits, remarked that: “I don'’t really think this compares to any other kind
of programming that I've done in the past, like... It's completely different.” From this
perspective, Al and coding, as constituted by large language models taking the
existing culture of code as input and reproducing it, does not fundamentally
challenge the dominant culture. However, we see this not as the fault of “Al”
technology, but rather how designers tend to frame the problem of applying

machine learning technology to programming practice.

My hope for changing the culture in programming (and the programming in
culture), however, is not without doubt. It could be that the existing, dominant
culture of programming is merely entrenched in the future, and programming
continues to be a relatively individualistic, siloed, typewritten activity that es-
chews care for relationships across difference or devalues other practices like
drawing. Oftentimes, when a new approach is proposed that runs counter to the
status quo, it is received less than favorably: whether upsetting existing dogma
or power centers, perceived as less “technical” or scientific (leading to questions
about why one would do such-and-such a thing, why we should care, or how
we should quantitatively evaluate its effectiveness), or perceived as naive (e.g.,
in the case of notational programming, the refrain “why not use GUIs?”). Rather
than see such common reactions as a downside, however, I think such reactions
can signal that we are on the right track, that we are posing important questions
that may actually challenge existing practices; in short, that we are ‘ontological

designing’ correctly.
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In the future, I hope to expand upon topics and questions raised in this the-
sis. Pertaining to my work that mixes intercultural and computational learning,
I believe I have barely scratched the surface in designing activities and peda-
gogy that investigates how computational thinking can serve the development
of people’s intercultural competence and societal understanding. Pertaining to
my work that challenges tools and values around “writing” code, embedding
a drawing canvases in a typewritten IDE opened up new questions such as:
how might coding practice change when images are first-class objects in all ma-
jor IDEs? How might pen-based tablets alongside Al technology open up new,
interactive ways of programming that we can barely imagine today? And per-
taining to both educational and material aspects of my thesis, can we construct
a new way of programming that can bring people together but, unlike the Dy-
namicLand project presented in Chapter 5, does not reproduce the dominant
paradigm of typing code? How might these new programming systems evolve
through community processes, including intercultural conflicts and encounters?
What kinds of unique affordances might notational programming systems hold
for intercultural learning in education programs, and vice-versa? While inves-
tigating such questions, I hope to maintain the curious, childlike science and
technology studies” motto that “it could be otherwise,” and go beyond critique
to ask, “how exactly?”: to build and design for the “otherwise,” even when such

designs may not be as warmly received or understood.
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